
Qiao Liu is a postdoctoral researcher in the Department of Statistics at Stanford University. His research interest focuses on machine learning, statistics, and
computational biology.
Wanwen Zeng is a postdoctoral researcher in the Department of Statistics at Stanford University. Her research interest focuses on machine learning and
bioinformatics.
Wei Zhang is a postdoctoral researcher in the Department of Biomedical Engineering at Shandong University. His research interest focuses on bioinformatics.
Sicheng Wang is a Master student in the Department of Computer Science and Engineering at UCSD. His research interest focuses on machine learning and
bioinformatics.
Hongyang Chen is a Reseacher at Zhejiang Lab. His interest focuses on machine learning and communication.
Rui Jiang is an Associate Professor in the Department of Automation at Tsinghua University. His research interest focuses on bioinformatics.
Mu Zhou is a Visiting Professor in the Department of Computer Science at Rutgers University. His research interest focuses on medical image analysis and drug
discovery.
Shaoting Zhang is affiliated with Shanghai Artificial Intelligence Laboratory. His research interest focuses on computer vision, deep learning, and medical AI
applications.
Received: July 20, 2022. Revised: September 28, 2022. Accepted: October 18, 2022
© The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

Briefings in Bioinformatics, 2023, 24(1), 1–10

https://doi.org/10.1093/bib/bbac494

Problem Solving Protocol

Deep generative modeling and clustering of single cell
Hi-C data
Qiao Liu †, Wanwen Zeng†, Wei Zhang , Sicheng Wang, Hongyang Chen, Rui Jiang, Mu Zhou and Shaoting Zhang

Corresponding authors. Rui Jiang, Ministry of Education Key Laboratory of Bioinformatics, Research Department of Bioinformatics at the Beijing National Research
Center for Information Science and Technology, Center for Synthetic and Systems Biology, Department of Automation, Tsinghua University, Beijing 100084, China.
Tel: +86 010-62795578; Fax: 010-62786911; E-mail: ruijiang@tsinghua.edu.cn; Mu Zhou, SenseBrain Research, San Jose, CA 95131, USA. Tel: +1 4086017085;
E-mail: muzhou@sensebrain.site; Shaoting Zhang, Shanghai Artificial Intelligence Laboratory, Shanghai 200240, China. Tel: +86 02134204113;
E-mail: zhangshaoting@pjlab.org.cn
†Qiao Liu and Wanwen Zeng contributed equally.

Abstract

Deciphering 3D genome conformation is important for understanding gene regulation and cellular function at a spatial level. The recent
advances of single cell Hi-C technologies have enabled the profiling of the 3D architecture of DNA within individual cell, which allows
us to study the cell-to-cell variability of 3D chromatin organization. Computational approaches are in urgent need to comprehensively
analyze the sparse and heterogeneous single cell Hi-C data. Here, we proposed scDEC-Hi-C, a new framework for single cell Hi-C analysis
with deep generative neural networks. scDEC-Hi-C outperforms existing methods in terms of single cell Hi-C data clustering and
imputation. Moreover, the generative power of scDEC-Hi-C could help unveil the differences of chromatin architecture across cell types.
We expect that scDEC-Hi-C could shed light on deepening our understanding of the complex mechanism underlying the formation of
chromatin contacts.

Keywords: single cell, 3D genome, deep learning, unsupervised learning

Introduction
The rapid development in single-cell technologies enables us to
reliably measure the genomic, transcriptomic and epigenomic
features of a particular cellular context at single-cell resolution
[1–4]. These powerful technologies provide scientists with the
opportunity to study the unique patterns of cell type specificity
and gene regulation. One fundamental question regarding the
abundant single cell data is how to distinguish different cell types
in a heterogeneous cell population based on the measured molec-
ular signatures. A variety of computational approaches have been
developed to decipher the heterogeneity across cell types based on
transcriptome, methylome and chromatin accessibility [5–11].

The majority of the current single-cell assays, such as RNA
sequencing (scRNA-seq) and transposase-accessible chromatin
using sequencing (scATAC-seq), ignore the spatial information
of the genome, such as 3D chromatin structure, which plays an
important role in genome functions, including gene transcrip-
tion and DNA replication [12–14]. The emerging single cell Hi-
C technologies bridge this gap by measuring the 3D chromatin
structures in individual cells, which have the potential to com-

prehensively reveal the diverse genome functions underlying the
unique genome structure [15–19].

Several computational methods have been proposed for the
single cell Hi-C data analysis. For example, Kim et al. [20] used
a latent Dirichlet allocation (LDA) topic model for discovering the
latent topics given the scHi-C data. scHiCluster [21] introduced
a random walk-based strategy for data imputation and used
PCA for embedding. HiCRep/MDS [22] used multi-dimensional
scaling (MDS) for learning a low-dimensional embedding. Higashi
[23] is a recent method that utilized hypergraph representation
learning for single cell imputation and embedding. However, all
these methods require an additional clustering approach (e.g. K-
means) for identifying cell types. In addition, choosing the most
appropriate clustering approach is sometimes difficult as it is
hard for a single clustering approach to perform the best across
different datasets.

To overcome the aforementioned limitations, we developed
scDEC-Hi-C, a comprehensive end-to-end unsupervised learning
framework for single cell Hi-C data embedding, clustering and
generation by deep generative neural networks. Unlike existing
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Figure 1. The overview of the proposed scDEC-Hi-C model. scDEC-Hi-C is a multi-scale model, which contains a chromosome-wise convolutional
autoencoder (CAE) and a cell-wise single cell deep embedding and clustering model. The intra-chromosome single-cell Hi-C contacts matrices are
first fed to a CAE for dimension reduction and latent feature extraction. Then the chromosome readout (e.g. concatenation) is applied to get the cell-
wise representation. The cell-wise deep generative neural networks can further learn a low dimensional representation of a cell and cluster each cell
simultaneously. In the latent space, latent variables z and c sampled from a Gaussian distribution and a Category distribution, respectively, are fed to

the G network. The H network has two outputs of which one corresponds to the latent embedding (
∼
z) and one corresponds to the estimated cluster label

(
∼
c). The Dx and Dz discriminator networks are used for adversarial training.

methods that treat embedding and clustering as two separated
tasks, our approach enables simultaneously learning the low-
dimensional embeddings of single cell Hi-C data and cluster-
ing the single cell Hi-C data by neural network in an unsu-
pervised manner. From systematical experiments, scDEC-Hi-C
demonstrates superiority in various tasks, including clustering
the cell types, data imputation for quality enhancement, as well
as data generation given a desired cell type. To the best of our
knowledge, scDEC-Hi-C is the first computational framework that
integrates the data embedding and clustering intrinsically for the
single cell Hi-C data analysis.

Results
Overview of scDEC-Hi-C
scDEC-Hi-C consists of two major computational modules,
including a convolutional autoencoder module for chromosome-
wise representation learning and a deep generative module for
cell-wise representation learning and clustering (Figure 1). The
autoencoder module aims at extracting the low-dimensional fea-
tures for each chromosome within a cell. Then the chromosome-
wise features are transformed to cell-wise features through a
chromosome readout function. We chose global concatenation
for the readout function as default. The cell-wise generative
model is adopted from our previous work scDEC [24] where G
and H networks aim at bidirectional transformation between
the m-dimensional latent space and n-dimensional representer
space. Note that the latent variables z follows a standard Gaussian
distribution N

(
0, I

)
and c follows a category distribution Cat

(
K, w

)
,

which is parameterized by the number of clusters K and the
weight w. G network takes z and c as inputs and Dx network was
used for matching the distribution of cell-wise representation x

and G network output
∼
x through adversarial training. Similarly,

H network and Dz network also work in an adversarial manner
where H network could learn the latent representation (

∼
z) and

infer the cluster (
∼
c) simultaneously. The detailed hyperparameters

of model architecture were provided in Supplementary Table 1
available online at http://bib.oxfordjournals.org/.

scDEC-Hi-C is capable of accurately identifying
cell types
A fundamental problem in single cell Hi-C data analysis is to
identify different cell types in heterogeneous cell populations.
To evaluate the performance of scDEC-Hi-C on this task, we
adopted three commonly used benchmark datasets here and
systematically compared scDEC-Hi-C to five baseline methods
(see section Methods for data preprocessing and Supplementary
Table 2 available online at http://bib.oxfordjournals.org/). Three
metrics, including NMI, ARI and homogeneity, were introduced for
measuring the performance in this unsupervised learning task
in order to quantify the ability for distinguishing different cell
types in the single cell Hi-C datasets (see section Methods). Note
that all baseline methods are only able to learn the embedding
for each single cell and require additional clustering methods
(e.g. K-means) while scDEC-Hi-C simultaneously learns cell
embeddings and assigns clustering labels to each cell. scDEC-
Hi-C is capable of learning embeddings, which could separate
cells from different cell types with a relatively larger margin than
other baseline methods (Figure 2A–C and Supplementary Figure 1
available online at http://bib.oxfordjournals.org/). It is worth
mentioning that scDEC-Hi-C exhibits superior performance on
Ramani dataset [17] by outperforming other methods with an
ARI of 0.845, compared to 0.826 of Higashi, 0.795 of scHiCluster
and 0.785 of HiCRep/MDS. The same trend was observed in
Nagano dataset where scDEC-Hi-C achieves the highest ARI of
0.411, compared to 0.389 of the second best. In the Dip-C dataset
[25] where only annotated labels were available, we treat the
annotated labels as surrogate ground truth labels. All methods
demonstrate significantly lower clustering performance than the
Ramani dataset with ground truth label. Specifically, scDEC-Hi-
C only demonstrates slightly lower performance than Higashi,
in terms of Homogeneity (Figure 2D). In the readout module in
scDEC-Hi-C, the information coming from each chromosome was
aggregated. Thus, it is worthy to evaluate the contribution of each
chromosome. The experimental results show that chromosome
11 contributed the most in Ramani dataset and scDEC-Hi-C
consistently outperformed Higashi in 18 chromosomes out of
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Figure 2. The performance of scDEC-Hi-C method and baseline methods on single cell Hi-C datasets. (A) The embeddings visualization of Ramani dataset
across five methods. (B) The embeddings visualization of Dip-C dataset across five methods. (C) The embeddings visualization of Nagano dataset across
five methods. (D) The clustering performance in terms of NMI, ARI and Homogeneity of six methods across three datasets. (E) The performance of
scDEC-Hi-C and Higashi using a single chromosome (asterisk denotes the performance using all chromosomes). (F) The performance of scDEC-Hi-C and
baseline methods under different dropout rates on Ramani dataset.

24 (Figure 2E and Supplementary Figure 2 available online at
http://bib.oxfordjournals.org/). To further investigate the effect
of sequencing depth on the clustering performance, we randomly
dropout the sequencing reads with different rate for each cell.
scDEC-Hi-C consistently outperforms all other baseline methods
at different dropout rates (Figure 2F).

scDEC-Hi-C enables the identification
of structural differences
In single cell Hi-C data analysis, one fundamental question to ask
is whether cell type specificity is revealed by the structural dif-
ference regions in Hi-C contacts. The cell type specificity in single
cell data, such as single cell RNA-seq and single cell ATAC-seq,
can be clearly revealed by marker genes or differential peaks [26].
In bulk Hi-C data, it has been validated that cell type specificity
is highly associated with the dynamic chromatin loops within
topologically associating domains (TADs) [27, 28]. Therefore, it
is worthwhile to investigate whether the structural differences
also exist in single cell Hi-C data. To explore this, we used the
autoencoder from the first stage of scDEC-Hi-C model as an
approach for scDEC-Hi-C imputation. In brief, we segmented Hi-C
contact matrix of each chromosome per cell into non-overlapping
square patches within the range of 1 Mbp. We then treated
the output of decoder as the imputed single cell Hi-C data (see

section Methods). We designed extensive experiments to evaluate
whether the imputed single cell Hi-C data could reveal more
biological insights than the raw data. We aggregated single cells
of K562 and GM12878 cell lines from Ramani dataset using 10 k as
resolution and then merged them as the pseudo-bulk Hi-C data.
In the meanwhile, we also downloaded the bulk Hi-C data from
GM12878 and K562 cell lines as ground truth for validation. From
the Hi-C profile of a genomic region (chr9: 132.9M–134.9M), K562
and GM12878 have significantly different Hi-C contact map. The
difference is also emphasized by the imputed pseudo-bulk Hi-C
data (Figure 3A). Specifically, the chromatin structural boundaries
marked by the rectangle is much clearer by imputed pseudo-bulk
Hi-C data than the pseudo-bulk Hi-C data without imputation,
which demonstrates the power and effectiveness of scDEC-Hi-C in
enhancing the resolution of chromatin structural boundaries. It is
also noticeable that the chromatin structural boundaries revealed
by bulk Hi-C data have a larger consistency with imputed pseudo-
bulk Hi-C data than the pseudo-bulk Hi-C data without imputa-
tion. To verify whether these structural differences are statisti-
cally significant, we calculated the correlation between merged
scHi-C data (with/without imputation) and bulk Hi-C data at
different distance (up to 1 Mb). We found that imputed scHi-C data
demonstrated a higher Pearson and Spearman correlation than
the raw scHi-C data (Supplementary Figure 3 available online at
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http://bib.oxfordjournals.org/). To further investigate the regula-
tory landscape of this genomic region, we downloaded both RNA-
seq and histone modification data from ENCODE database [29]
and visualized them with the help of WashU Epigenome Browser
[30]. It can be seen that both RNA-seq signal and H3K4me1 marker
are more enriched in K562 cell line than GM12878 cell line in the
bounded region (Figure 3B), which indicates a strong activity of
regulatory elements such as enhancer in K562. Next, we designed
quantitative experiments to verify whether scDEC-Hi-C can help
enhance the signal-to-noise ratio by data imputation. Taking the
bulk K562 Hi-C data as ground truth, we calculated the Pearson’s
correlation of Hi-C interactions of different distances between
ground truth and imputed data. It is seen that the interactions
at a larger distance are more difficult to impute (Figure 3C). The
correlation between bulk Hi-C data and raw single cell Hi-C data
is less than 0.25, while the single cell Hi-C data imputed by scDEC-
Hi-C, Higashi and scHiCluster are much higher than the baseline.
scDEC-Hi-C consistently outperforms scHiCluster and Higashi at
different distances ranging from 0 to 1 Mb. To sum up, scDEC-Hi-
C enables improving the identification of structural boundaries,
which further helps us study the chromatin structure difference
across diverse cell types.

scDEC-Hi-C enhances the discovery of chromatin
loops
Chromatin loops are defined as a pair of genomic regions that
are brought into spatial proximity, which can be inferred from
bulk Hi-C data. Chromatin loops have been proved to be highly
relevant to gene regulation, cell fates and functions. We then
intended to explore whether the chromatin loops can also be
identified within single cell Hi-C data. Similarly, we merged single
cell Hi-C data of K562 and GM12878 cell lines, respectively. In
the meanwhile, we also downloaded the corresponding bulk Hi-
C data for comparison. We applied Fit-Hi-C [31], a computational
tool for calling chromatin loops from Hi-C data, to bulk Hi-C
data and imputed single cell Hi-C data by scDEC-Hi-C, respec-
tively. There are 6478 chromatin loops in GM12878 cell line while
732 (11.3%) chromatin loops are also discovered in imputed sin-
gle cell Hi-C data (Figure 4A). scDEC-Hi-C additionally identi-
fied 294 chromatin loops, which are not contained in the bulk
Hi-C chromatin loops. Note that only 196 chromatin loops can
be identified from raw single cell Hi-C data and scDEC-Hi-C
significantly improves the recall rate from 1.4% to 11.3% by
imputation (Supplementary Figure 4 available online at http://
bib.oxfordjournals.org/). Additionally, we also compared the pre-
cision and recall rate improvement introduced by different meth-
ods, scDEC-Hi-C also demonstrates a more powerful imputation
ability than baseline methods (Supplementary Figure 5 available
online at http://bib.oxfordjournals.org/). We visualized the chro-
matin loops in a genomic region (chr3:118.2M–120.2M) of bulk
Hi-C chromatin loops versus either raw single cell Hi-C data
(Figure 4B) or imputed single cell Hi-C data (Figure 4C). In K562
cell line, 12.0% of the chromatin loops from bulk Hi-C data can
be also recovered by imputed single cell Hi-C data and 72.5%
of the chromatin loops from imputed single cell Hi-C data are
also contained in bulk chromatin loops (Figure 4D). In the same
genomic region, imputed single cell Hi-C data contains three
chromatin loops while two of them were consistent with bulk Hi-
C chromatin loops (Figure 4F) while the raw single cell Hi-C data
only has one false chromatin loop (Figure 4E). To conclude, scDEC-
Hi-C is able to promote the identification of chromatin loops from
Hi-C data.

scDEC-Hi-C identifies the cell-type specific
TAD-like boundaries
In this section, we showcased an application of using scDEC-
Hi-C in identifying the cell-type specific TAD-like boundaries
in two cell types, GM12878 and K562. We now focus on the
exploring the relationship between domain boundaries inferred
from imputed single cell Hi-C data and the implicating functions.
We extracted a 1 Mbp genomic region (chr9:36.5–37.5M), which
contains Pax5, a master regulator of B cell development [32].
At the same time, we collected several annotation tracks using
WashU Epigenome Browser [30]. We note that Pax5 regulator was
only expressed in GM12878 cell type according to the RNA-seq
annotation track. The imputed pseudo-bulk Hi-C (merged from
scHi-C data) shows clear TADs or sub-TADs, while the original
pseudo-bulk Hi-C without imputation fails to demonstrate clear
boundaries (Figure 5). Interestingly, scDEC-Hi-C identified several
promoter-enhancer interactions, which are consistent with the
annotations by two histone modifications. Compared to K562 cell
type, GM12878 contains more sub-domain boundaries, which are
enriched in signals from two histone modifications and ChIA-PET
with CTCF (a promoter P and three potential enhancers E1–E3
were denoted in GM12878). More importantly, except for the com-
mon contact domain boundaries (yellow dots), we also observed
that GM12878 contained cell type specific domain boundaries
(blue dots) that were not discovered in K562 cell types. Pre-
vious studies have shown that such cell type specific domain
boundaries are crucial to the relevant chromatin architecture
and the underlying gene regulations [33]. A great portion of the
cell type specific contact domain boundaries may not be uncov-
ered in insufficient sequenced scHi-C data. With the powerful
scDEC-Hi-C model, one can significantly enhance the resolu-
tion of scHi-C data and identity more refined contact domain
boundaries.

Ablation analysis
To systematically evaluate the robustness of scDEC-Hi-C, we
designed the following ablation studies. We used Ramani dataset
for the ablation studies. First, we removed the cell-wise scDEC
module and only kept the chromosome-wise convolutional
autoencoder module. We directly used K-means for clustering the
features from concatenated autoencoder features. The ARI, NMI
and Homogeneity decreases by 6.2, 7.2 and 7.1%, respectively.
Second, we trained the chromosome-wise autoencoder model
first and then fixed the weights in the autoencoder and trained
the cell-wise scDEC module. Without joint training of the multi-
stage modules, the performance also decreases by 2.4% of ARI,
2.8% of NMI and 2.5% of Homogeneity (Supplementary Table 3
available online at http://bib.oxfordjournals.org/). The model
ablation studies demonstrate the significant contribution of both
multi-stage model and joint training strategy.

Conclusion and discussion
In this study, we proposed scDEC-Hi-C, a computational tool for
comprehensive single cell Hi-C data analysis using deep genera-
tive neural network. Unlike previous works that treat dimension
reduction and clustering of the single cell Hi-C data as two sepa-
rated and independent tasks, scDEC-Hi-C intrinsically integrates
the task of learning a low-dimensional representation and cluster-
ing the single cell by designing a two-stage multi-scale framework,
which is composed of a chromosome-wise autoencoder and a
cell-wise symmetric GAN model. During the training, the multi-
scale models are simultaneously optimized and the results of
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Figure 3. The imputation results of scDEC-Hi-C method. (A) The first row denotes merged single cell Hi-C profile of 40 cells of a genomic region (chr9:
132.9M–134.9M) across two diverse cell lines. The middle row denotes the corresponding imputed single cell Hi-C profile with scDEC-Hi-C. The third
row denotes the corresponding bulk Hi-C profile of the two cell lines. The differences of the Hi-C profile from two cell lines are illustrated. (B) Genome
annotation including RNA-seq and H3K4me1 histone marker across two cell lines of the same genomic region. (C) The Spearman correlation between
bulk K562 Hi-C data and pseudo-bulk Hi-C data with imputation by scDEC-Hi-C (red), scHiCluster (green) and Higashi (yellow). The baseline (black)
denotes the Spearman correlation between bulk K562 Hi-C data and pseudo-bulk Hi-C data without imputation.

embedding and clustering are benefitting each other. Based on a
series of experiments, scDEC-Hi-C achieves superior or competi-
tive performance compared to state-of-the-art baseline methods.
For the downstream analysis, scDEC-Hi-C model demonstrated
the excellent ability of imputing the sparse and noisy single
cell Hi-C data, which facilitates the identification of chromatin
structural differences and chromatin loops. Besides, scDEC-Hi-C

also shows the superior power in generating the Hi-C profile of
different cell types, which has been confirmed to be consistently
with the cell type label (Supplementary Figure 6 available online
at http://bib.oxfordjournals.org/).

We also provide several directions for further improving our
work. First, the inter-chromosomal interactions, which were
ignored by existing methods and scDEC-Hi-C, have been proved
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Figure 4. scDEC-Hi-C facilitates the identification of chromatin loops. (A) The Venn plot of chromatin loops from bulk Hi-C data and single-cell Hi-C
data imputed by scDEC-Hi-C in GM12878 cell line. (B) The chromatin loops from raw single cell Hi-C data versus chromatin loops from bulk Hi-C data
of a GM12878 cell line genomic region (chr3:118.2M–120.2M). (C) The chromatin loops from imputed single cell Hi-C data versus chromatin loops from
bulk Hi-C data in GM12878 cell line of the same genomic region. (D) The Venn plot of chromatin loops from bulk Hi-C data and single-cell Hi-C data
imputed by scDEC-Hi-C in K562 cell line. (E) The chromatin loops from raw single cell Hi-C data versus chromatin loops from bulk Hi-C data of a K562
cell line genomic region (chr3:118.2M–120.2M). (F) The chromatin loops from imputed single cell Hi-C data versus chromatin loops from bulk Hi-C data
in in GM12878 cell line of the same genomic region.

Figure 5. Application of scDEC-Hi-C in identifying the cell-type specific TAD-like boundaries. scHi-C data with/without imputation from a differential
genomic region (chr9:36.5–37.5M) between GM12878 and K562 cell type. Several annotation tracks, including RNA-seq, ChIP-seq with CTCF, ChIP-seq
with two histone modifications and ChIA-PET with CTCF target across two cell types were also shown below the Hi-C data. We observed that a B cell
important regulator, Pax5, only expressed in GM12878 cell type. (A) Hi-C maps and annotation tracks in GM12878 cell type. (B) Hi-C maps and annotation
tracks in K562 cell type.

to regulate gene expression [34]. Second, incorporating multi-
omics data, including functional genomic regulatory annotation
data [35, 36] and pharmaceutical interaction data [37, 38], could

potentially improve the performance. Third, it is worthwhile
for applying scDEC-Hi-C to other different types of 3D genome
interaction data such as HiChIP [39].
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With scDEC-Hi-C, researchers can perform single cell Hi-C
experiments of the cell types or tissues with interest. Then one
can simultaneously perform unsupervised learning analysis on
single cell Hi-C data and uncover biological findings through the
imputation and generation power. We expect that scDEC-Hi-C can
help unveil the single cell regulation mechanism in 3D genome.

Methods
Data preprocessing
For Ramani dataset, we filtered cells with less than 5000 con-
tacts. Then we collected 624 cells for Ramani dataset. For Dip-C
dataset, we used the same QC strategy from the original paper
[25] and collected 1954 annotated cells across 14 cell types. For
Nagano dataset, we followed the data preprocessing strategy
from [22] and collected 1171 cells from 4 cell cycle phases. The
details of datasets were summarized in Supplementary Table 2
available online at http://bib.oxfordjournals.org/. The raw Hi-C
contact matrices were log-transformed and then resized by spine
interpolation so that the Hi-C contact matrix of each chromosome
was represented as a 50 by 50 matrix. Then we applied a mean
filtering and random walk as suggested by scHiCluster [21]. The
chromosome-wise module encodes each chromosome into a 50-
dimensional vector and then concatenated across all chromo-
somes. The cell-wise module further learns a low-dimensional
representation of a cell with dimension of latent variable z set to
10. The embedding of each cell was based on the concatenation

of reconstructed
∼
z and

∼
c (before softmax).

Adversarial training in scDEC-Hi-C model
The scDEC-Hi-C is multi-scale unsupervised learning model
derived from our previous works Roundtrip and scDEC [24, 40]
with extensive modifications. scDEC-Hi-C mainly contains a
chromosome-wise module convolutional autoencoder (CAE) [41]
and a cell-wise model scDEC. The CAE module aims at mapping
scHi-C data from the original data space to a representer space,
which significantly reduced the data dimension. Specifically,
the CAE module takes the single cell Hi-C interaction of each
chromosome as a training instance and each intra-chromosomal
interaction matrix will be encoded to a fixed dimension vector
through encoder. The embedding vectors for intra-chromosomal
interaction matrices within each cell are concatenated in the
representer space to obtain a fused embedding. The training of
the CAE can be formulated as

LAE = E

[∥∥∥xchr − D
(
E

(
xchr

))∥∥∥2

F

]

where xchr denotes an intra-chromosomal Hi-C interaction matrix
and E

(•)
, D

(•)
denote the encoder and decoder in the CAE module,

respectively. The chromosome-wise features E
(
xchr

)
of each chro-

mosome were concatenated to obtain the cell-wise representation
by

x = Concat
(
E

(
xchr1

)
, . . . , E

(
xchrX

))

The scDEC module takes cell-wise fused embedding in the rep-
resenter space as input and learns the low-dimension embedding
of a cell in the latent space and clusters the cells simultaneously.
scDEC module is composed of a pair of two GAN models. For the
forward GAN model, a pair of latent variables z and c are sam-
pled from a Gaussian distribution and a Categorical distribution,
respectively. The categorical distribution is updated through an

adaptive mechanism (Supplementary Table 4 available online at
http://bib.oxfordjournals.org/). G network is used for conditionally
generating fake data

{
x̃i

}N
i=1 that have a similar distribution to the

real data
{
xi

}N
i=1 in the representer space while the discriminator

network Dx tries to discern true data from generated samples in
the representer space. In the backward GAN model, the function
H and the discriminator Dz aim at transforming the data from
representer space to the latent space. Discriminators can be
considered as binary classifiers where any input data point will
be asserted to be positive or negative. Besides, we used WGAN-
GP [42] as the architecture for the pair of GAN models where the
gradient penalties of discriminators were considered as additional
loss terms. We then define the objective loss functions of the
above four networks (G, H, Dx and Dz) in the training process as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

LGAN (G) = − E
z∼p(z),c∼Cat(K,w)

[Dx (G (z, c))]

LGAN (Dx) = − E
x∼p(x)

[Dx(x)] + E
z∼p(z),c∼Cat(K,w)

[Dx (G (z, c))]

+ λ E
x̂∼p̂(x̂)

[(∥∥∇x̂Dx
(
x̂
)∥∥

2 − 1
)2

]
LGAN (H) = − E

x∼p(x)
[Dz (H(x))]

LGAN (Dz) = − E
z∼p(z)

[Dz(z)] + E
x∼p(x)

[Dz (H(x))]

+ λ E
z∼p(z)

[(∥∥∇zDz
(
z
)∥∥

2 − 1
)2

]

where p(z) and Cat
(
K, w

)
denote the distribution of the continuous

variable and discrete variable in the latent space. In practice,
samplingx from p(x) can be regarded as a process of randomly
sampling from i.i.d data in the representer space with replace-
ment. p̂

(
x̂
)

and p
(
z
)

denote a uniformly sampling from the straight
line between a pair of points sampled from true data and gener-
ated data in the representer and latent space, respectively. λ is a
penalty coefficient, which is set to 10 in all experiments.

Roundtrip loss
During the training process, we also intend to minimize the
roundtrip loss [40] which is defined as ρ

((
z, c

)
, H

(
G

(
z, c

))))
and

ρ
(
x, G

(
H(x)

))
where z and c are sampled from p(z) and Cat

(
K, w

)
,

respectively. The basic principle for this loss is to minimize the
distance when a data point goes through a roundtrip transforma-
tion between two different data domains. Specifically, we applied
l2 loss to the continuous part in roundtrip loss and cross entropy
loss to the discrete part in roundtrip loss. We further denoted the
roundtrip loss as

LRT (G, H) = α‖x − G (H(x))‖2
2 + α‖z − Hz (G (z, c))‖2

2

+βCE (c, Hc (G (z, c)))

where α and β are two coefficients and are both set to 10 in the
experiments. Hz

(•)
and Hc

(•)
denote the continuous and discrete

part of H
( • )

, respectively. CE
( • )

represents the cross-entropy
function. The idea of roundtrip loss, which exploits transitivity
for regularizing structured data has also been used in previous
works [43, 44].

Joint training
Combining the adversarial training loss and roundtrip loss
together, we can get the full training loss for the scDEC module
as L

(
G, H

) = LGAN
(
G

) + LGAN
(
H

) + LRT
(
G, H

)
andL

(
Dx, Dz

) =
LGAN

(
Dx

) + LGAN
(
Dz

)
, respectively. We iteratively updated the

weight parameters in two generative models (G and H) and the
two discriminative models (Dx and Dz), respectively. Thus, the
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training of scDEC module can be represented as

G∗, D∗
x, H∗, D∗

z =
⎧⎨
⎩

arg min
G,H

L (G, H)

arg min
Dx ,Dz

L (Dx, Dz)

To further achieve joint training of CAE and scDEC modules, we
first pretrained the CAE module for 100 epochs. Then we updated
the parameters of CAE and scDEC iteratively. The Adam optimizer
[45] with a learning rate of 2 × 10−4 was used for optimizing
the parameters in neural networks. The whole training process
is illustrated in Supplementary Table 5 available online at http://
bib.oxfordjournals.org/ in detail.

Data imputation by scDEC-Hi-C model
We use the chromosome-wise model autoencoder for data impu-
tation. Specifically, the reconstructed Hi-C map from the decoder
was regarded as the imputed single cell Hi-C data. We used the
same strategy in [13] for Hi-C matrices extraction.

Data generation by scDEC-Hi-C model
We generate the intermediate cell state (embeddings) of sin-
gle cell Hi-C data by interpolating the latent indicator c of two
‘neighboring’ cell types. Assume that two cell types correspond to
the latent indicator c1 and c2, respectively. The generated single
cell Hi-C profile can be represented as G

(
z, ĉ

)
where ĉ = αc1 + (

1 −
α
)
c2. Note that the α is the coefficient from 0 to 1 and z is sampled

from a standard Gaussian distribution.

Network architecture in scDEC-Hi-C
For the CAE module, the encoder contains four convolutional
layers and two fully connected layers while the decoder consists
of two fully connected layers and four transposed convolutional
layers for reconstructing the Hi-C interaction matrices. For the
scDEC module. The G network contains five fully connected layers
and each hidden layer has 512 nodes while the H network contains
five fully-connected layers and each hidden layer has 256 nodes.
Dx and Dz both contain two fully connected layers and 128 nodes
in the hidden layer. Note that batch normalization [46] was used
in discriminator networks.

Updating the Category distribution
The probability parameter w in the Category distribution Cat

(
K, w

)
is adaptively updated every 200 batches of data based on the
inferred cluster label (Supplementary Table 4 available online at
http://bib.oxfordjournals.org/). K can be estimated by gap statistic
[47] if not provided by user.

Evaluation metrics for clustering
We compared different methods for clustering according to three
commonly used metrics, normalized mutual information (NMI)
[48], adjusted Rand index (ARI) [49] and Homogeneity [50]. Assum-
ing that U and V are true label assignment and predicted label
assignment given n observation data points, which have CU and
CV clusters in total, respectively. NMI is then calculated as

NMI =
∑CU

p=1

∑CV
q=1

∣∣Up ∩ Vq
∣∣ log n|Up∩Vq |

|Up |×|Vq |

max
(
−∑CU

p=1

∣∣Up
∣∣ log |Up|

n , −∑CV
q=1|Vq| log |Vq |

n

)

The Rand index [51] is a measure of agreement between two
cluster assignments while ARI corrects lacking a constant value

when the cluster assignments are selected randomly. We define
the following four quantities: (1) n1: number of pairs of two objects
in the same groups in both U and V, (2) n2: number of pairs of two
objects in different groups in both U and V, (3) n3: number of pairs
of two objects in the same group of U but different group in V,
(4) n4: number of pairs of two objects in the same group of V but
different group in U. Then ARI is calculated by

ARI =

(
n
2

)
(n1 + n4) − [(n1 + n2) (n1 + n3) + (n3 + n4) (n2 + n4)](
n
2

)
− [(n1 + n2) (n1 + n3) + (n3 + n4) (n2 + n4)]

Homogeneity is calculated by Homo = 1 − H(U|V)

H(U)
, where

⎧⎨
⎩

H (U|V) = −∑CU
p=1

∑CV
q=1

|Up∩Vq |
n log |Up∩Vq |∑CV

q=1 |Up∩Vq |

H(U) = −∑CU
p=1

∑CV
q=1 |Up∩Vq |

CU
log

∑CV
q=1 |Up∩Vq |

CU

Baseline methods
We compared scDEC-Hi-C to three comparison methods in our
study. scHiCluster is a PCA-based method that could be used
for imputing and clustering scHi-C data. LDA was implemented
from https://github.com/khj3017/schic-topic-model and the
default parameters were used. scHiCluster was implemented
from https://github.com/zhoujt1994/scHiCluster and the default
parameters were used. HiCRep/MDS used multidimensional
scaling to embed scHi-C data into two dimension and was imple-
mented from https://github.com/liu-bioinfo-lab/scHiCTools.
Higashi is a hypergraph representation learning framework for
embedding scHi-C data. We downloaded Higashi from https://
github.com/ma-compbio/Higashi and implemented using the
default parameters.

Key Points

• scDEC-Hi-C provides an end-to-end framework based on
the combination of autoencoder and deep generative
model to comprehensively analyze single cell Hi-C data,
including low-dimensional embedding and clustering.

• Through a series of experiments including single cell
Hi-C data clustering and structural difference identifi-
cation, scDEC-Hi-C demonstrates superior performance
over existing methods.

• In the downstream analysis of chromatin loops from sin-
gle cell Hi-C data, scDEC-Hi-C is capable of significantly
enhancing the ability for identifying Hi-C chromatin
loops by data imputation.

Supplementary Data
Supplementary data are available online at https://academic.oup.
com/bib.
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