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The organization of chromatin accessibility across the whole 
genome reflects an epigenetic landscape of gene regulation1,2. 
With the recent development in single-cell technology, it 

becomes feasible to characterize the epigenetic landscape of indi-
vidual cells3. In particular, scATAC-seq is an efficient method for 
the study of variation in chromatin accessibility both between and 
within populations at the single-cell level4,5. However, the analysis of 
scATAC-seq presents unique methodological challenges due to the 
high dimensionality (hundreds of thousands possible peaks) and 
high data sparsity (only 1–10% peaks are detected per cell)6.

Several computational approaches have been proposed to 
tackle the challenges in scATAC-seq analysis. scABC estimated 
weights of cells based on the number of distinct reads and applied 
a weighted K-medoids clustering to infer cell types7. cisTopic 
applied latent Dirichlet allocation (LDA) as a probabilistic model 
to identify the cis-regulatory topics enriched in different cells by 
simultaneously optimizing topic–cell probability and region–topic 
probability8. Cusanovich et al. proposed a pipeline that performs 
the term frequency–inverse document frequency transformation 
(TF-IDF) and singular value decomposition (SVD) iteratively to 
get a low-dimensional representation of scATAC-seq data4,9. Scasat 
introduced another pipeline which involved Jaccard similarity 
measure and multidimensional scaling (MDS) to reduce the high 
dimensionality in scATAC data10. SnapATAC divided the genome 
into bins of equal size, built a bins-by-cells binary count matrix and 
then applied principle component analysis (PCA) for a dimension 
reduction11. Recently, deep generative models have emerged as a 
powerful framework for both representation learning and data gen-
eration12,13,14. A newly developed method, SCALE, utilized a varia-
tional autoencoder (VAE) to learn the latent features of scATAC-seq 
data and then used a K-means by default for clustering the  
latent features15.

Here, we propose a new approach for analysing scATAC-seq data 
by simultaneously learning the deep embedding and clustering of 

the cells in an unsupervised manner. Our method, named scDEC, 
is based on learning a pair of generative adversarial networks 
(GANs; Fig. 1). Such a symmetrical and paired GAN architecture 
has recently been successfully applied to image style transfer16 and 
density estimation17 while we adopt this architecture to the new task 
of unsupervised clustering and apply it to the analysis of single-cell 
genomic data. Unlike the methods discussed above, where an 
external method (for example, K-means) is typically required for 
clustering the latent features, our model directly models the cell 
clustering process. Thus, cell clustering and latent feature represen-
tation learning are jointly optimized during the training process. In 
other words, scDEC enables simultaneous learning of latent features 
and cell clustering. We demonstrate the advantage of this approach 
in a series of experiments, where scDEC shows superiority over 
competing methods. We also illustrate several downstream applica-
tions of scDEC in scATAC-seq analysis, including trajectory infer-
ence, donor effect removal and latent feature interpretation. Finally, 
we extend scDEC to multi-modal single-cell analysis and demon-
strate its effectiveness in a real data example.

Results
Overview of scDEC model. scDEC consists of two GAN models, 
which are utilized for transformations between latent space and data 
space (Fig. 1). The scATAC-seq data are first preprocessed through 
a TF-IDF transformation and a PCA dimension reduction before 
being fed to the scDEC model. Assuming that the input scATAC-seq 
data contains K cell types, then a continuous latent variable z and a 
discrete latent variable c are introduced, where z ∼ N (0, I) and c ~ 
Cat(K, w), respectively. We also provide an approach for estimating 
the number of cell subpopulations if K is unknown (Methods). The 
forward transformation through the G network can be considered 
as a process of conditional generation given an encoded style (z) 
and an indicated cluster label (c). The backward transformation 
through the H network aims at encoding a data point x to the latent 
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space and inferring the cluster label, simultaneously. If we assume 
the last layer of the H network contains m nodes (m > K), then z̃ 
denotes the output of the first m-K nodes and c̃ denotes the out-
put of the remaining K nodes with an additional softmax function. 
Dx and Dz are two discriminator networks that are used for match-
ing the distributions of data x̃ and z̃ to the empirical distribution 
of the data and latent variable distribution, respectively. (G, Dx) 
and (H, Dz) can be considered as two GAN models that are jointly 
trained. The G and H network each contain 10 fully connected 
layers while Dx and Dz have two fully connected layers each (see 
detailed hyperparameters in Supplementary Table 1). Note that the 
weight w in the category distribution is also learned automatically 
via an updating scheme according to the feedback of inferred clus-
ter labels by c̃ (Methods). After model training, the cluster labels 
are inferred based on c̃ (Methods). The output of the last layer of 
the H network combined with z̃ and c̃ (before softmax) is used as 
a low-dimensional representation for downstream analysis such as 
data visualization and trajectory analysis.

scDEC automatically identifies cell types in scATAC-seq data. 
To demonstrate the ability of scDEC to reveal differences between 
cell subpopulations and identify cell types in an unsupervised man-
ner, we tested scDEC on four benchmark scATAC-seq datasets 
across different numbers of cells and cell types (see statistics and 
abbreviations in Supplementary Fig. 1). Specifically, scDEC was 
benchmarked against six baseline methods, including scABC7, 
SCALE15, cisTopic8, Cusanovich20184,9, Scasat10 and SnapATAC11 
(Methods). The performance of a method was evaluated on (1) 
whether different cell subpopulations can be clearly separated in a 
low-dimensional space and (2) whether true cell type labels can be 
accurately inferred by clustering. To address the first question, we 
applied each method to conduct a dimension reduction or to extract 
the latent features. The latent dimension was set to 15 for the two 
datasets with relatively smaller numbers of cells and cell types, and 
20 for the two larger datasets. For each method, we constructed a 

t-distributed stochastic neighbour embedding (t-SNE)18 or uniform 
manifold approximation and projection (UMAP)19 plot based on 
the latent features and then visualized with fluorescence-activated 
cell sorting (FACS) cell labels on the plot to see whether the sub-
populations were well separated. To address the second question, 
we evaluated the clustering results of each method based on FACS 
sorting cell labels using three commonly used metrics, namely nor-
malized mutual information (NMI), adjusted Rand index (ARI) and 
homogeneity score (Methods). Since five of the methods (except 
scABC) focused on learning a low-dimensional representation and 
require an additional clustering step, we used Louvain clustering20, 
which was recommended by a benchmark study6, for clustering the 
latent features learned by these methods. The results are summa-
rized below for each dataset.

InSilico dataset. This dataset5 is an in silico mixture constructed 
by artificially combining six individual scATAC-seq experiments, 
which were separately conducted on a different cell line. It is 
observed that cells from a minor cell type TF-1 (6.83%, in purple) 
are dispersed into several clusters by SCALE, Cusanovich2018, 
Scasat and SnapATAC while cisTopic and scDEC can maintain 
the close distance in the low-dimensional representation (Fig. 2a). 
scDEC achieves an NMI of 0.871, an ARI of 0.896 and a homogene-
ity of 0.866, which outperforms the best baseline method scABC 
(NMI = 0.822, AIR = 0.855 and homogeneity = 0.840) by a notice-
able margin (Fig. 2e and Supplementary Fig. 2).

Forebrain dataset. This dataset21 was derived from P56 mouse 
forebrain cells which contained eight different cell groups in adult 
mouse forebrain (EX: excitatory neuron, IN: inhibitory neuron, AC: 
astrocyte, OG: oligodendrocyte, MG: microglia). Interestingly, all 
the baseline methods fail to distinguish three subtypes of excitatory 
neuron cells (EX1, EX2 and EX3) while scDEC shows a relatively 
clear separation among these three subpopulations of cells (Fig. 2b). 
Again, scDEC demonstrates a superior clustering performance by 
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Fig. 1 | the illustration of scDeC model. The read count matrix of scATAC-seq will first be preprocessed by a TF-IDF transformation and a PCA dimension 
reduction (for example, n = 20) before it is fed to the scDEC model. In the latent space, latent variables z and c, sampled from a Gaussian distribution and 
a Category distribution respectively, will be concatenated together before they are fed to the G network. The H network has two outputs of which one 
corresponds to the latent embedding (z̃) and one corresponds to the estimated cluster label (c̃) through a softmax function. The Dx network works as 
a discriminator for discerning the true scATAC-seq data (x) from the generated data ( x̃). The Dz network is another discriminator for distinguishing the 
learned continuous latent variable (z̃) from the real continuous latent variable (z).
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achieving the highest NMI of 0.750, ARI of 0.663 and homogeneity 
of 0.759 (Fig. 2e and Supplementary Fig. 3).

Splenocyte dataset. This dataset22 was collected from a mixture of 
mouse splenocytes after removing red blood cells, which finally 
resulted in 12 cell subpopulations (CD27+ NK: CD27+ natural 
killer cell, CD27- NK: CD27− natural killer cell, DC: dendritic cell, 
Fo B: follicular B cell, MZ B: marginal zone B cell, M CD8 T: mem-
ory CD8 T cell, N CD4 T: naïve CD4 T cell, N CD8 T: naïve CD8 
T cell, Reg T: regulatory T cell, Trans B: transitional B cell). A major 
cell type, follicular B cells (FO B, 42.89%), together with marginal 
zone B cells (MZ B) and transitional B cells (Trans B) are more or 
less mixed together by all baseline methods while scDEC illustrates 

a clearer separation (Fig. 2c). As the largest dataset (around 3,000 
cells) among the four, scDEC still achieves the highest NMI of 0.839, 
ARI of 0.884 and homogeneity of 0.829 (Fig. 2e and Supplementary 
Fig. 4).

All blood dataset. This dataset23 involves cellular differentiation of 
multipotent cells during human haematopoiesis, containing 13 cell 
subpopulations in total (CLP: common lymphoid progenitor, CMP: 
common myeloid progenitor, GMP: granulocyte-macrophage pro-
genitor, HSC: hematopoietic stem cell, LMPP: lymphoid- primed 
multipotent progenitor, MEP: megakaryocyte-erythrocyte pro-
genitor, MPP: multipotent progenitors, UNK: human natural killer, 
Mono: monocyte, pDC: plasmacytoid dendritic cell). Three types 
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Fig. 2 | evaluation of scDeC compared with other baseline methods. a–d, Visualization of the InSilico (a), Forebrain (b), Splenocyte (c) and All blood (d) 
datasets by different methods. e, Clustering results of the different methods across the four datasets. f, Performance of different methods under different 
dropout rates on the Forebrain dataset.
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of cells, including Mono, pDC and CLP cells, can only be separated 
from other cells by cisTopic, Scasat and scDEC (Fig. 2d). scDEC still 
achieves the highest ARI (0.309) among all compared methods. The 
overall clustering performance is comparable with Cusanovich2018 
and slightly lower than cisTopic (Fig. 2e and Supplementary Fig. 5).

scDEC achieves the best or second best (in one case) cluster-
ing results across multiple scATAC-seq datasets. scDEC shows 
consistently superior performance if we replace the Louvain clus-
tering with the commonly used K-means clustering for the com-
pared methods (Supplementary Fig. 6). The t-SNE visualizations of 
scDEC coloured by the cluster label identified by scDEC across the 
above four benchmark datasets are also provided (Supplementary 
Fig. 7). We also note that the performance of scDEC is not sensitive 
to the dimension of latent features (Supplementary Fig. 8).

Next, we further investigate the performance of different  
methods at different dropout rates, in order to assess the ability 
of handing scATAC-seq data with different degree of sparsity. We 
downsampled the original reads in the Forebrain dataset by ran-
domly dropping out the non-zero entities in the read count matrix 
with probability equal to the dropout rate. scDEC consistently dem-
onstrates the best performance with respect to the ARI metric for 
clustering at different dropout rates ranging from 0 to 50%. At the 
dropout rate of 50%, scDEC achieves an ARI of 0.279, compared 
with 0.202 of the best method cisTopic (Fig. 2f).

scDEC facilitates cell-type-specific motif discovery and tra-
jectory inference. We next explored whether scDEC can help 
identity cell-type specific motifs, which is essential for under-
standing the context-specific gene regulation. To achieve this, we 
first applied the scDEC model to the Forebrain dataset21 to infer 
the cluster label for each individual cell, and used chromVAR24 to 
identify cluster-specific enriched motifs from the JASPAR data-
base25. We ranked cluster-specific enriched motifs (Methods) and 
discovered several significant motif enrichment patterns (Fig. 3a,  
Supplementary Table 2). Both single cluster-specific motifs and 
the co-occurrence of motifs in two (cluster 1 and 6) or three 
clusters (cluster 2, 3 and 4) are observed, which might reveal the 
co-regulation mechanism underlying the corresponding multiple 
TFs. For example, En1, which is enriched in cluster 1 (one-sided 
Mann–Whitney U test, p = 6.14 × 10−51), is a well-known marker 
for the brain fate in astrocytes (AC)26. It is reported that Neurod2 
(p = 4.50 × 10−239) regulates the cortical projection neuron, which 
constitutes the major excitatory neuron (EX) population27. Meis1 
(p-value = 6.68 × 10−59) was known to have crucial functions in neu-
ral differentiation from neural progenitors28. Vax1 (p = 2.84 × 10−126) 
is a novel homeobox-containing gene that regulates the develop-
ment of the basal forebrain29. The impact of Elk1 (p = 1.87 × 10−71) 
deficiency was proved to indicate the microglial (MG) activation30. 
The compound loss of Sox9 (p = 3.81 × 10−137) may lead to a fur-
ther decrease in oligodendrocyte (OC) progenitors31. Interestingly, 
among the three similar cell types (EX1–EX3), we also discovered 
several motifs that were only enriched in one or two specific clusters 
that correspond to EX cells identified by scDEC (Supplementary 
Fig. 9). Several example literature-validated motifs are demon-
strated in the t-SNE visualization according to the enrichment score 
calculated by chromVAR (Fig. 3b).

Next, we applied scDEC to trajectory inference during the 
haematopoiesis differentiation. We collected the cells from the 
donor BM0828 of the All blood dataset, which contains 533 cells 
across 7 subpopulations at different stages of differentiation. After 
obtaining the low-dimensional representation and the inferred 
cluster labels of scATAC-seq data, the smooth curves are anno-
tated with cell lineages using Slingshot software32 (Fig. 3c). The 
smooth curves with a tree-based structure are largely consistent 
with the true haematopoietic differentiation tree. Although it 
has been proved that common myeloid progenitors (CMPs) can  

differentiate into both granulocyte-macrophage progenitors 
(GMPs) and megakaryocyte-erythrocyte progenitors (MEPs)33, 
only the differentiation path from CMP to MEP is observed in 
this dataset. We then took the cells from multipotent progenitors 
(MPPs), lymphoid- primed multipotent progenitors (LMPPs) and 
common lymphoid progenitors (CLPs) for a further study, where 
there exists a differentiation path (MPP→LMPP→CLP). To fully 
exploit the generation power of scDEC, we first left LMPP out as the 
target cells for imputation and trained scDEC based on the remain-
ing cells comprising only MPP and CLP cells. Then we imputed data 
by interpolating the latent label indicator (Methods) and visualized 
the imputed data together with the true data. Interestingly, when 
the interpolation coefficient α changes from 0 to 1, the imputed 
data seem to capture the dynamics differentiation path from MPP 
to CLP. Specifically, the generated scATAC-seq data are similar to 
the real LMPP data according to t-SNE visualization when α = 0.5  
(Fig. 3d). Next, we asked whether the interpolation on the latent indi-
cator is a more effective way of data generation than directly inter-
polating on the raw scATAC-seq. We averaged all the scATAC-seq 
data of LMPP cells as a meta-cell and calculated the Pearson correla-
tion between generated data and meta-cell. The data generated by 
scDEC achieve a notably higher correlation than data generated by 
direct interpolation and interpolation on PCA-reduced data (Fig. 3e 
and Supplementary Table 3). In summary, the generation power of 
scDEC sheds light on recovering the missing cell types of scATAC 
data and exploring the intermediate state of two neighbouring cell 
types of scATAC-seq data.

scDEC disentangles donor effect and promotes interpretation of 
latent features. Single-cell experiments are often conducted with 
notable differences in capturing time, equipment and even tech-
nology platforms, which may introduce batch effects to the data. 
To evaluate whether scDEC can automatically correct or alleviate 
batch effects in the training process, we collected three types (CLP, 
LMPP and MPP) of human haematopoietic cells from two donors 
with ID BM0828 (donor 1) and BM1077 (donor 2)23. We mixed the 
cells from the two donors together (200 cells from donor 1 and 180 
cells from donor 2) and evaluated how well the variation due to 
cell type and donor was resolved in the embedding (that is, latent 
representation) learned by scDEC and alternative methods. Note 
that the latent dimension of each method was fixed to 13 and no 
donor information was revealed to each method. Since the embed-
ding by scDEC depends on the number of clusters K, we varied  
K from 2 to 6 and examined the gap statistic plot (Fig. 4d), which 
exhibited two peaks at K = 3 and K = 5, respectively. The embed-
ding results for scDEC and alternative methods are shown in  
Fig. 4a and Supplementary Figs. 10–13. The three cell types as well as 
the donor effects in two of the cell types are well captured by scDEC 
(K = 5), cisTopics and SnapATAC, but not by SCALE, whereas the 
donor effect in the third cell type (CLP) is too small to be discern-
ible. It is interesting that at K = 3 (the first peak of the gap statistic) 
the clustering results by scDEC matches the three cell types almost 
perfectly. Specifically, SCALE is basically unable to clearly separate 
the three types of cell. cisTopic and SnapATAC cannot alleviate the 
donor effect in LMPP or MPP cells, as the same types of cell from 
two different donors were separated with a notable distance in the 
t-SNE plot (Fig. 4a). Considering the first mode where K = 3, only 
9 cells from donor 1 and 17 cells from donor 2 were wrongly clus-
tered by scDEC, which illustrates a total error rate of 6.86%. Besides, 
scDEC also demonstrates an NMI of 0.754, ARI of 0.805 and homo-
geneity of 0.757, which outperforms other compared methods by a 
large margin (Fig. 4b and Supplementary Fig. 13). In this sense our 
method can be used to adjust for donor or batch effects in clustering 
and visualization.

Next, we carefully analysed the latent feature learned by scDEC 
by visualization. We noticed that features corresponding to the 
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latent discrete variable (features 11–13) were highly correlated 
with biological cell type while other features more or less revealed 
within-cell-type variations (Fig. 4e). For example, feature 1 is highly 
expressed in the LMPP of donor 2 and the MPP of donor 1. Feature 
10 can be a donor-specific indicator of LMPP. We proposed a strat-
egy for mining motif information underlying the latent features 
(Supplementary Fig. 14). Through the strategy, the top-ranked 
motif (p = 1 × 10−90) for feature 2 is SP1, which was proven to affect 
multiple haematopoietic lineages34. To sum up, the interpretable 
features in the latent space reveal both biological cell types and 
within-cell-type variations.

scDEC is capable of analysing large scATAC-seq data. We fur-
ther examine whether scDEC is applicable to extremely large 

scATAC-seq datasets. We collected a dataset from a mouse atlas 
study, which contains 81,173 single cells from 13 adult mouse tis-
sues using sci-ATAC-seq9. The original atlas study applies a com-
putational pipeline to infer 40 cell types, which were regarded as 
‘reference’ cell labels for the comparison of scDEC and other base-
line methods. To investigate the scalability of scDEC, we randomly 
down-sampled the original dataset to a different scale of dataset and 
scDEC shows a consistently good agreement with the reference cell 
label (Fig. 4f). For the full scale of the dataset, scDEC achieves an 
NMI of 0.732, ARI of 0.614 and homogeneity of 0.693 while most 
methods failed to handle the full dataset due to the memory limita-
tion (500 GB for the computational environment). We compared 
scDEC to the deep learning method SCALE and noticed that scDEC 
achieves a higher consistency with ‘reference’ label but a little slower 
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running time (Supplementary Fig. 15). We also noticed that the 
scDEC successfully identified most of the major reference cell types 
for each tissue (Supplementary Fig. 16).

scDEC enables integrative analysis of multi-modal single-cell 
data. It is natural to extend scDEC in multi-modal single-cell data 
analysis where multiple types of molecule within the same cell are 
measured simultaneously. Here, we apply scDEC to a dataset from 
10x Genomics, which contains around 10,000 peripheral blood 
mononuclear cells (PBMC) with both measurements of scRNA-seq 

and scATAC-seq for each cell. Note that the granulocytes were 
removed by cell sorting of this dataset. After data preprocessing to 
scRNA-seq and scATAC-seq data, respectively, the two types of data 
are concatenated and fed into the scDEC model (see Methods). As 
the PBMC dataset has no FACS cell-type labels, we used the cell-type 
labels that were annotated by the 10x Genomics R&D team as surro-
gates. Most annotated cell types can be well distinguished by scDEC 
through the t-SNE visualization of the latent features (Fig. 4g). The 
visualization of different subpopulations of monocytes, T cells and 
B cells also demonstrates a clearer separation than using scRNA-seq 
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or scATAC-seq only (Supplementary Fig. 17). The differentiable 
expression profiles of the several marker genes for PBMC cell types 
are illustrated in Fig. 4h. To name a few, MS4A1 is a well-known 
marker gene for B cells35, which is highly expressed in a cluster iden-
tified by scDEC. FCER1A, a marker gene for dendritic cells (DC)36, 
is observed to be highly expressed in a tiny cluster identified by 
scDEC. Given surrogate cell labels, we evaluate the clustering per-
formance of scDEC when applied to one type of data (scRNA-seq 
or scATAC-seq) and both types of single-cell data. scDEC achieves 
a substantially better clustering performance using both types  
of single-cell data than using scRNA-seq or scATAC-seq alone  
(Fig. 4i). Finally, we also compared scDEC to two recent methods 
on multi-modal single-cell data analysis. scDEC achieves an NMI of 
0.779, ARI of 0.718 and homogeneity of 0.752, which outperforms 
MOFA+37 and is comparable to scAI38. To sum up, scDEC can be 
easily extended to integrative analysis of multi-modal single-cell 
data analysis.

Discussion
In this study, we proposed scDEC for accurately characterizing cell 
subpopulations in scATAC-seq data using a deep generative model. 
Unlike previous studies that take dimension reduction and cluster-
ing as two independent tasks. scDEC intrinsically integrates the 
low-dimensional representation learning and unsupervised clus-
tering together by carefully designing a GAN-based symmetrical 
architecture. scDEC can serve as a powerful tool for scATAC-seq 
data analysis, including visualization, clustering and trajectory 
analyses. In a series of experiments, scDEC achieves competitive 
or superior performance compared with other baseline methods. 
In downstream applications, we focused on the generation power 
of scDEC, which can facilitate the intermediate cell-state inference. 
The latent features learned by scDEC reveal both biological cell 
types and within-cell-type variations, which shed light on the bio-
logical mechanism. Our examples also showed that scDEC can han-
dle very large datasets and is applicable to multi-modal single-cell 
data analysis.

We also provide several directions for improving scDEC. 
First, when applying scDEC to joint analysis of scRNA-seq and 
scATAC-seq data, it might be helpful to further enhance the clus-
tering performance if scDEC model incorporates the relationship 
between genes and regulatory elements (REs). Second, the method 
of utilizing the generation power of scDEC can be further explored, 
especially in a complicated tree-based trajectory of cell differentia-
tion or time-course single-cell profiles of cell development. Third, 
we note that there are already several tools or pipelines for single-cell 
batch-effect correction, such as Seurat-v339 and Harmony40. It is 
interesting to explore how to integrate such a procedure for data 
integrative analysis into scDEC models.

With scDEC, researchers could perform a scATAC-seq analysis 
or single-cell joint ATAC/RNA-seq analysis of the cell types or tis-
sues with interests. Then one can simultaneously cluster single cells 
and uncover the biological findings underlying the learned latent 
features. We hope scDEC could help unveil the single-cell regula-
tory mechanism and contribute to understanding heterogeneous 
cell populations.

Methods
Data preprocessing. All the scATAC-seq datasets were uniformly preprocessed 
before being fed into the scDEC model. To reduce the level of noise, we only kept 
peaks with at least one read count in more than 3% of the cells. Next, similar to 
Cusanovich et al.9, we applied a TF-IDF transformation to the raw scATAC-seq 
count matrix, which is a widely used technology in information retrieval and 
text mining41,42. We calculated the ‘term frequency’ by normalizing the raw reads 
count matrix for each cell through dividing the total reads count within that cell. 
The ‘inverse document frequency’ was calculated as the inverse frequency of 
each region to be accessible across all cells. The inverse document frequency was 
log-transformed and multiplied by the term frequency. The TF-IDF transformation 

helps increase proportionally to the number of times a peak appears in the cell, 
which gives a higher importance weight to the peaks with less frequency. Finally, 
a PCA43 was applied to reduce the dimension of the scATAC to 20, which is 
implemented using the ‘Scikit-learn’ package44. scDEC shows robustness to the 
dimension of PCA (Supplementary Fig. 8). A summary of all scATAC-seq datasets 
used in this study is provided in Supplementary Table 4.

Visualization. We use t-SNE18 as the default algorithm for visualizing the 
latent features of scATAC-seq data learned by different methods by setting the 
visualization dimension to 2. The t-SNE was implemented with the ‘Scikit-learn’ 
package44. The UMAP19 was also implemented as an additional visualization tool 
for latent features.

Adversarial training in scDEC model. The scDEC model comprises a pair 
of GAN models. For forward GAN mapping, G network aims at conditionally 
generating samples {x̃i}Ni=1 that have a similar distribution to the observation data 
{xi}Ni=1 while the discriminator Dx tries to discern observation data (positive) 
from generated samples (negative). The backward mapping function H and the 
discriminator Dz aim to transform the data from the data space to the latent 
space. Discriminators can be considered as binary classifiers where an input data 
point will be asserted to be positive (1) or negative (0). We use WGAN-GP45 
as the architecture for the GAN implementation, where the gradient penalty 
of discriminators will be considered as an additional loss term. We define the 
objective loss functions of the above four neural networks (G, H, Dx and Dz) in the 
training process as the following





LGAN (G) = − E
z∼p(z),c∼Cat(K,w)

[Dx(G(z, c))]

LGAN (Dx) = − E
x∼p(x)

[Dx (x)] + E
z∼p(z),c∼Cat(K,w)

[Dx (G (z, c))]

+λ E
x̃∼p̂(̃x)

�
(||∇x̃Dx (�x) ||2 − 1)2

�

LGAN (H) = − E
x∼p(x)

[Dz (H(x))]

LGAN (Dz) = − E
z∼p(z)

[Dz (z)] + E
x∼p(x)

[Dz (H (x))]

+λ E
z∼p̄(z)

�
(||∇zDz (z) ||2 − 1)2

�

where p(z) and Cat(K, w) denote the probability distribution of continuous and 
discrete variables in the latent space, respectively. In practice, sampling x from 
p(x) can be regarded as a procedure of randomly sampling from independent and 
identically distributed (i.i.d.) observation data with replacement. p̂ (x̂) and p̄ (z) 
denote uniformly sampling from the straight line between the points sampled from 
true data and generated data. Minimizing the loss of a generator (for example, 
LGAN (G)) and the corresponding discriminator (for example, LGAN (Dx)) are 
somehow contradictory as the two networks (G and Dx) compete with each other 
during the training process. λ is a penalty coefficient, which is set to 10 in all 
experiments.

Round-trip loss. During the training, we also aim to minimize the round-trip 
loss, which is defined as ρ((z,c), H(G(z,c)))) and ρ(x,G(H(x))) where z and c 
are sampled from the distribution of the continuous latent variable p(z) and the 
category distribution Cat(K, w). The principle is to minimize the distance when a 
data point goes through a round-trip transformation between two data domains. In 
practice, we used l2 loss as the continuous part of round-trip loss and cross-entropy 
loss as the discrete part in round-trip loss. We further denoted the roundtrip loss as

LRT (G,H) = α ∥x − G (H (x))∥22 + α ∥z − Hz (G (z, c))∥22
+βCE (c,Hc (G (z, c)))

where α and β are two constant coefficients, which are both set to 10. Hz(·) and 
Hc(·) denote the continuous and discrete outputs from H(·), respectively and CE(·) 
represents the cross-entropy loss function. The idea of round-trip loss, which 
exploits transitivity for regularizing structured data, has also been used in  
previous work16,46.

Full training loss. Combining the adversarial training loss and round-trip 
loss together, we can get the full training loss for generator networks and 
discriminator networks as L (G,H) = LGAN (G) + LGAN (H) + LRT (G,H) and 
L (Dx,Dz) = LGAN (Dx) + LGAN (Dz), respectively. To achieve joint training of 
the two GAN models, we iteratively updated the parameters in the two generative 
models (G and H) and the two discriminative models (Dx and Dz), respectively. 
Thus, the overall iterative optimization problem can be represented as

G∗,D∗

x ,H
∗,D∗

z =





argmin
G,H

L (G,H)

arg min
Dx ,Dz

L (Dx,Dz)
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An Adam optimizer47 with a learning rate of 2 × 10−4 was used for updating 
the weights in the neural networks. The training process is illustrated in detail in 
Supplementary Table 5.

Data generation in scDEC. We generate the state of intermediate cells by 
interpolating the latent indicator c of two ‘neighbouring’ cell types. Assume there 
are two cell types that correspond to the latent indicator c1 and c2, respectively. The 
generated data can be represented as G(z, c̃) where c̃ = αc1 + (1 − α)c2. Note that 
the α is the generation coefficient from 0 to 1 and z is still sampled from a standard 
Gaussian distribution. The interpolation of latent features has already been used 
for exploring and visualizing the transition between two types of image48.

Network architecture in scDEC. All the networks in scDEC are made of fully 
connected layers. The G network contains 10 fully-connected layers and each 
hidden layer has 512 nodes, while the H network contains 10 fully connected layers 
and each hidden layer has 256 nodes. Dx and Dz both contain 2 fully-connected 
layers and 256 nodes in the hidden layer. Batch normalization49 was used in 
discriminator networks.

Updating the category distribution. The probability w in the Category 
distribution Cat(K, w) is adaptively updated every 100 batches of data based on the 
inferred cluster label from c̃ of full training data (Supplementary Table 6).

Evaluation metrics for clustering. We compared different methods for clustering 
according to three metrics: normalized mutual information (NM)I50, adjusted 
Rand index (ARI)51 and homogeneity52. Assuming U and V are true and predicted 
label assignments given n data points, which have CU and CV clusters in total, 
respectively. NMI is then calculated by

NMI =
∑CU

p=1
∑CV

q=1
∣∣Up ∩ Vq

∣∣ log n|Up∩Vq|

|Up|×|Vq|

max
(
−

∑CU
p=1

∣∣Up
∣∣ log |Up|

n ,−
∑CV

q=1 |Vq|log |Vq|

n

)

The Rand index53 is a measure of agreement between two cluster assignments 
while ARI corrects lacking a constant value when the cluster assignments are 
selected randomly. We define the following four quantities (1) n1: number of pairs 
of objects in the same groups in both U and V, (2) n2: number of pairs of objects 
in different groups in both U and V, (3) n3: number of pairs of objects in the same 
group of U but different group in V, (4) n4: number of pairs of objects in the same 
group of V but different group in U. Then ARI is calculated by

ARI =

(
n

2

)
(n1 + n4) − [(n1 + n2) (n1 + n3) + (n3 + n4) (n2 + n4)]

(
n

2

)
− [(n1 + n2) (n1 + n3) + (n3 + n4) (n2 + n4)]

Homogeneity is calculated by Homo = 1 −
H(U|V)
H(U) , where





H (U|V) = −
CU∑
p=1

CV∑
q=1

|Up∩Vq|

n log |Up∩Vq|
∑CV

q=1 |Up∩Vq|

H (U) = −
CU∑
p=1

∑CV
q=1 |Up∩Vq|

CU
log

∑CV
q=1 |Up∩Vq|

CU

Estimating the number of clusters K. In order to apply scDEC to scATAC-seq 
where the number of cell types is unknown. We provide an algorithm for 
estimating the number of clusters K using a gap statistic54. We first compared 
the average within-cluster distance of the preprocessed scATAC-seq data and a 
reference dataset, which can be constructed with a random matrix with the same 
size using K-means algorithm. The average within-cluster distance on the reference 
dataset was calculated 1,000 times by Monto Carlo simulation and the average 
result was used. The optimal choice of K is given for which the gap between the 
single-cell data and the reference data is maximised. We note that this estimation 
of number of clusters K closely matches the truth clusters numbers with the 
scATAC-seq used in this study (Supplementary Fig. 18).

Identification of cluster-specific motifs and trajectory inference. The cluster- 
specific motifs are identified by Mann–Whitney U test55 with the alternative 
hypothesis that the chromVAR scores24 of cells in one cluster or multiple clusters 
have a positive shift compared with chromVAR scores of the rest of the cells. Then 
the motifs are ranked according to the p-values and the top-ranked motifs illustrated.

We used Slingshot32 software with default parameters for trajectory inference. 
Given the latent features and the cell cluster labels inferred by scDEC, Slingshot is 
able to annotate smooth curves, which represent the estimated cell lineages.

Baseline methods. We compared scDEC to multiple baseline methods in this 
study, including scABC7, SCALE15, cisTopic8, Scasat10, Cusanovich20184,9 and 

SnapATAC11. SCALE was implemented from its original source code repository 
(https://github.com/jsxlei/SCALE). Other methods were implemented directly 
from a benchmark study6. For the methods (cisTopic, Scasat, Cusanovich2018 and 
SnapATAC) that only learn a low-dimension embedding of the scATAC-seq data, 
we used Louvain clustering20, which was recommended by the benchmark study6, 
as the default method for clustering the low-dimension embedding. Suggested 
by SCALE, we set the embedding dimension to the same number across different 
methods within a comparison experiment.

MOFA+37 and scAI38 are two recent works on multi-modal single-cell data 
analysis using matrix factorization frameworks. For MOFA+, we directly used 
the pretrained model on the same PBMC dataset, which can be downloaded from 
https://biofam.github.io/MOFA2/. scAI was implemented from its source code 
(https://github.com/sqjin/scAI) and the number of factors set to 20, which is the 
same as the dimension of latent features for scDEC. We applied K-means to the 
latent factors of MOFA+ and scAI in the clustering experiments. Note that the 
number of clusters K is set to 14, which is the number of cell types of the annotated 
label from the 10x Genomics R&D team.

Data preprocessing. Similar to SCALE, we filtered the scATAC-seq peaks by only 
keeping peaks that contain at least one read count in more than 3% of all cells. 
Uniform preprocessing demonstrated the robustness of the method across different 
scATAC-seq datasets. In the experiment of multi-modal single-cell analysis, we 
applied a uniform preprocessing strategy to scRNA-seq and scATAC-seq. We first 
filtered the genes or peaks that have zero read count across all cells. Then the read 
count matrix of scRNA-seq or scATAC-seq will be normalized in which the read 
count of each gene (peak) was divided by the total count in each cell and multiplied 
by a scale factor (10,000 by default). Next, a log-transformation was applied with 
a pseudocount of 1. At last, a PCA transformation was applied to scRNA-seq and 
scATAC-seq, respectively. The top 25 components of each type of data were kept 
and then concatenated together (50 in total) before being fed to scDEC.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The InSilico dataset was collected from the GEO database with accession 
number GSE65360. The mouse Forebrain dataset was downloaded from the 
GEO database with accession number GSE100033. The Splenocyte dataset can be 
accessed at ArrayExpress database with accession number E-MTAB-6714. The 
All blood dataset can be accessed at the GEO database with accession number 
GSE96772. The mouse atlas data are available at http://atlas.gs.washington.edu/
mouse-atac. The human PBMCs dataset used in multi-modal single cell analysis 
was downloaded from 10x Genomics (https://support.10xgenomics.com/
single-cell-multiome-atac-gex) with entry ‘pbmc_granulocyte_sorted_10k’. The 
preprocessed scATAC-seq data used as input for scDEC model in this study can be 
downloaded from https://doi.org/10.5281/zenodo.397785856.

Code availability
scDEC is open-source software based on the TensorFlow library57, which is 
available on Github (https://github.com/kimmo1019/scDEC) and Zenodo (https://
doi.org/10.5281/zenodo.4560834)58. A CodeOcean capsule with several example 
datasets is available at https://codeocean.com/capsule/0746056/tree/v159. The 
pretrained models on both benchmark single-cell datasets and 10x Genomics 
PBMCs multi-modal single-cell dataset were provided.
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