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Abstract Although computational approaches have been complementing high-throughput biolog-

ical experiments for the identification of functional regions in the human genome, it remains a great

challenge to systematically decipher interactions between transcription factors (TFs) and regulatory

elements to achieve interpretable annotations of chromatin accessibility across diverse cellular con-

texts. To solve this problem, we propose DeepCAGE, a deep learning framework that integrates

sequence information and binding statuses of TFs, for the accurate prediction of chromatin acces-

sible regions at a genome-wide scale in a variety of cell types. DeepCAGE takes advantage of a den-

sely connected deep convolutional neural network architecture to automatically learn sequence

signatures of known chromatin accessible regions and then incorporates such features with expres-

sion levels and binding activities of human core TFs to predict novel chromatin accessible regions.

In a series of systematic comparisons with existing methods, DeepCAGE exhibits superior perfor-

mance in not only the classification but also the regression of chromatin accessibility signals. In a

detailed analysis of TF activities, DeepCAGE successfully extracts novel binding motifs and mea-

sures the contribution of a TF to the regulation with respect to a specific locus in a certain cell type.

When applied to whole-genome sequencing data analysis, our method successfully prioritizes puta-

tive deleterious variants underlying a human complex trait and thus provides insights into the

understanding of disease-associated genetic variants. DeepCAGE can be downloaded from

https://github.com/kimmo1019/DeepCAGE.
tion and
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Introduction

One of the fundamental questions in functional genomics is
how activities of genes are spatially and temporally controlled

through interactive effects of transcription factors (TFs) and
regulatory elements such as promoters, enhancers, and silen-
cers. These regulatory elements, as short regions of non-

coding DNA sequence, are known to typically reside in chro-
matin accessible regions and be bound by a set of TFs to carry
out regulatory functions in a manner specific to cellular con-
texts [1]. Therefore, the exploration of a landscape of chro-

matin accessible regions across major cell types will greatly
facilitate the deciphering of gene regulatory mechanisms and
further provide insights into cell differentiation, tissue home-

ostasis, and disease development [2].
Recent advances in deep sequencing techniques have

enabled genome-wide assays of chromatin accessibility. For

example, DNase-seq utilizes the DNase I enzyme to digest
DNA sequences and identify DNase I-hypersensitive regions
that are largely chromatin accessible [3]. ATAC-seq uses the

Tn5 transposase to integrate primer DNA sequences into
cleaved fragments that mainly come from chromatin accessible
regions [4]. With the accomplishment of the ENCODE [5] and
Roadmap [6] projects, these techniques have been successfully

applied to the establishment of the chromatin accessibility
landscape for dozens of cell lines across several species. The
accumulation of these data provides an unprecedented oppor-

tunity for deepening our understanding of both gene regula-
tion and occurrence of diseases [7–9].

However, due to limitations such as experimental cost, it is

still impractical to further extend the landscape to cover all
possible cell types, with the consideration of the huge variabil-
ity in cellular biological contexts such as cell differentiation,
environmental stimuli, and other factors. Toward this concern,

computational approaches have been proposed to predict
chromatin states by using such information as DNA sequence,
gene expression, and other types of data [10–19]. For example,

Kelley et al. proposed a deep convolutional neural network
model called Basset to predict chromatin accessible regions
purely relying on one-hot encoded DNA sequences [12]. Liu

et al. developed a hybrid deep learning model for integrating
multiple forms of sequence representations to achieve high pre-
diction performance [14]. Quang et al. used a hybrid convolu-

tional and recurrent neural network for predicting chromatin
signals [18]. However, a model purely relying on sequence data
can hardly be generalized to make predictions across different
cell types as the sequence itself is not cell type-specific. To over-

come this limitation, Zhou et al. proposed a regression model
called BIRD that utilized only gene expression data to predict
chromatin accessible regions [13]. Nevertheless, with the com-

plete removal of sequence data, the scope of application of this
method is limited because the availability of gene expression is
not as wide as sequence data. With the aforementioned under-

standing, Nair et al. proposed a deep residual neural network
[20] model called ChromDragoNN to combine both sequence
and expression data toward the prediction of chromatin acces-
sibility [21]. However, sequence signatures and expression fea-

tures are combined by simple concatenation in this method.
This formulation, though simple in computation, lacks enough
interpretability and is not consistent with existing biological

knowledge.
With the aforementioned understanding, we propose a
method called DeepCAGE, that is, a Deep densely connected
convolutional network for predicting Chromatin Accessibility

by incorporating Gene Expression and binding statuses of
TFs. Unlike BIRD and ChromDragoNN that take full expres-
sion data as predictors, our method carefully considers the

binding statuses of chromatin-binding factors (e.g., TFs),
based on the biological understanding that chromatin accessi-
bility is largely determined by chromatin-binding factors that

have access to DNA [2]. In a series of systematic evaluations,
DeepCAGE achieves state-of-the-art performance in not only
the classification of chromatin accessible statuses but also the
regression of DNase-seq signals. To make DeepCAGE more

understandable, we propose a strategy for visualizing the
weights in the first convolutional layer. Interestingly, many
known motifs were successfully recovered by DeepCAGE. In

the downstream application to whole-genome sequencing
(WGS) data analysis, DeepCAGE effectively prioritizes delete-
rious variants for the prediction and interpretation of complex

phenotypes.

Method

Overview of DeepCAGE

DeepCAGE was designed based on the premise that binding
statuses and gene expression of TFs could complement
sequence data toward the precise prediction of chromatin

accessibility. With this understanding, we designed DeepCAGE
as a hybrid neural network that consisted of a convolutional
module for sequence data and a feedforward module for

chromatin accessibility prediction (Figure 1). Briefly, we
applied the one-hot encoding to the input sequence data, fed
the encoded data to a densely connected convolutional neural
network (DenseNet), and took the output as the sequence fea-

ture. For binding statuses, we scanned the input sequence for
potential binding sites for a set of 402 human TFs by using
non-redundant motifs in the HOCOMOCO database [22] with

the tool Homer [23]. We then selected the maximum score of
reported binding sites for each TF to obtain a vector of 402
dimensions as the motif feature. For gene expression, we

focused on log-transformed transcripts per million (TPM) val-
ues of the 402 TFs and obtained a vector of 402 dimensions
after quantile normalization as the expression feature. With

these data, we combined the two vectors of the motif and
expression features by taking the element-wise product, and
we concatenated the result to the sequence feature to obtain
the hybrid feature, which went through a feedforward neural

network with a fully connected hidden layer and an output
layer for either classification or regression. We presented
detailed hyperparameters of the hybrid network in Table S1.

DeepCAGE extracts sequence features by using an archi-
tecture called the DenseNet, which has the advantage of allevi-
ating the vanishing-gradient problem and strengthening the

feature propagation [24]. As shown in Figure 1, there are three
dense blocks in our model. Each block includes five convolu-
tional layers, and each layer connects to every other layer in
a feedforward fashion. A convolutional layer consists of two

consecutive small kernels of size 1� 1 and 3� 1, where the
former aims at reducing the concatenated channels to a fixed
number, and the latter acts as the traditional convolution. A



Figure 1 Overview of the DeepCAGE model

The sequence of the input DNA region is converted to a one-hot matrix and goes through a DenseNet to extract sequence features.

Normalized expression levels of the 402 human TFs and the corresponding motif binding scores are combined by using an element-wise

product and then concatenated with sequence features. The combined features are finally fed to a feedforward neural network for

chromatin accessibility prediction. DenseNet, densely connected convolutional neural network; TPM, transcripts per million; Conv,

convolution; GIS, gradient importance score; TF, transcription factor.
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transition module is presented before a dense block for feature
extracting and dimensionality reduction. An input sequence is
first extended to a fixed length of 1000 bp centered at the mid-

point of the sequence and then converted to a 1000� 4 binary
matrix by using the one-hot encoding. The matrix is then fed to
the first transition module that contains a convolutional layer

and a max-pooling layer. The convolutional layer has 160 ker-
nels of size 4� 15 for extracting low-level features and detect-
ing DNA binding motifs, while the max-pooling layer is

present for finding the most significant activation signal in a
given sliding window of each kernel. Similar settings are used
for the other two transition modules for extracting high-level
features and dimensionality reduction. Rectified linear units

(ReLU) are used after each convolution operation for keeping
positive activations and setting negative activation values to
zeros. Batch normalization [25] and dropout [26] strategies

are used after each ReLU function for reducing internal
covariate shift and avoiding overfitting, respectively. For the
DeepCAGE regression model, there are two major differences

from the classification model. First, the output layer directly
uses a linear transformation instead of a sigmoid function. Sec-
ond, the mean square error (MSE) instead of the cross-entropy

is used as the loss function.

Data processing

DNase-seq bam files and narrow peaks across 55 human cell

types were downloaded from the ENCODE project [5] (Tables
S2 and S3). The human hg19 reference genome was divided
into non-overlapping regions (loci) of 200 bp. Considering that

a cell type may have multiple DNase-seq replicates, a locus is
regarded as chromatin accessible if it overlaps with narrow
peak regions of at least half of the replicates and inaccessible
otherwise (Figure S1). For the classification design, a binary
label ylk is assigned to locus l, representing whether it is acces-

sible in cell type k. For the regression design, bam files of mul-
tiple replicates for a cell type are pooled, and the raw read
counts, nlk, is obtained for locus l in cell type k. To eliminate

the effect of sequencing depths, the normalized read count,enlk ¼ Nnlk=Nk, is calculated, where Nk denotes the total num-
ber of pooled reads for cell type k, and N ¼ min Nkf g is the

minimal number of pooled reads across all cell types. The nor-
malized read counts are further log-transformed after adding a
pseudocount of one. The transformed data represent the level
of chromatin accessibility and are then used as the response

variable in the regression model.
RNA-seq data across the same 55 human cell types were

also downloaded from the ENCODE project (Table S4).

TPM of the 402 core human TFs were extracted from the gene
expression data. After further log transformation and quantile
normalization based on TPM values, the normalized expres-

sion within each cell type was averaged across multiple repli-
cates, and the mean expression profile of each cell type was
finally used.

WGS data and RNA-seq profiles of Genotype-Tissue
Expression (GTEx) muscle tissues were downloaded from
the Database of Genotypes and Phenotypes (dbGaP:
phs000424.v7.p2). Matching these two types of data, a total

of 491 donors were selected for downstream analysis
(Table S5). For each of these donors, RNA-seq data were
processed in the same way as ENCODE data, and WGS data

were filtered by excluding all insertions/deletions (indels) and
rare variants whose minor allele frequencies were less than or
equal to 5 across all donors.
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Model evaluation

Cell type-level five-fold cross-validation experiments are
designed for evaluating our method. In each fold, the 55 cell
types are partitioned into a training set with 44 cell types

and a testing set with the remaining 11 cell types (Tables S6
and S7). Putative known accessible loci are identified as geno-
mic regions (loci) that are chromatin accessible in at least two
cell types in the training set. Putative novel accessible loci are

identified as genomic regions that are accessible in at least two
testing cell types and are not present in the training data.

Cell type-wise and locus-wise metrics are defined to evalu-

ate our method from different perspectives (Figure S2). Cell
type-wise metrics are calculated within a testing cell type across
genomic regions to provide high-level assessment of a method.

Locus-wise metrics are calculated based on a genomic region
across cell types to give a detailed analysis of the performance.
These metrics provide a comprehensive and systematic evalua-

tion of our method in both the classification and the regression
designs.

Let YL�K and bYL�K be the true label matrix and predicted
matrix, where L denotes the number of putative loci and K

denotes the number of cell types. In the classification design,

ylk and bylk denote the true binary label and predicted probabil-
ity of chromatin accessible status for locus l in cell type k,
respectively. In this situation, the cell type-wise area under

the precision-recall curve (auPR) for cell type k is calculated

based on y�k ¼ y1k; y2k; � � � ; yLkð Þ and by�k ¼ by1k; by2k; � � � ; byLkð Þ
as follows. Given a threshold t for a cell type k, the precision
is defined as the number of correct predictions

(
P

lylkI bylk > tð Þ) over the number of all predictions

(
P

lI bylk > tð Þ), and the recall is defined as the number of cor-

rect predictions over the number of truly accessible loci
(
P

lylk), where I xð Þ is an indicator function that is equal to 1

if x is true and 0 otherwise. Varying the threshold from 0 to

1 and calculating the precision and recall at each threshold
value, the precision-recall curve can be drawn, and the area
under this curve can be obtained. The locus-wise auPR for
locus l is calculated based on yl� ¼ yl1; yl2; � � � ; ylKð Þ andbyl� ¼ byl1; byl2; � � � ; bylKð Þ in a similar way.

In the regression design, ylk and bylk denote the true and pre-

dicted DNase-seq signals for locus l in cell type k, respectively.
In this situation, the cell type-wise Pearson correlation coeffi-
cient (PCC) for cell type k is calculated as the PCC of y�k andby�k, and the locus-wise PCC is calculated based on yl� and byl�
in a similar way. The prediction squared error (PSE), which
considers both cell type-wise prediction and locus-wise predic-

tion, is calculated as PSE¼Pk

P
l ylk� ŷlkð Þ2=Pk

P
l ylk� �y�kð Þ2,

where �y�k ¼
P

lylk=L is the mean of y�k.
Two statistics, cell range and cell variability, are introduced

to describe the activity of a locus based on the true DNase-seq
signals across testing cell types. The cell range of locus l is cal-
culated by max yl�ð Þ �min yl�ð Þ, and the cell variability of locus

l is defined by the standard deviation of yl�:

Baseline methods

Basset [12], DeepSEA [10], and DanQ [18] are three representa-
tive neural network models that take only DNA sequences as
input. BIRD [13] is a regression model that takes only gene
expression data as input. ChromDragoNN [21] is a neural
network-based model that takes both DNA sequences and gene
expression data as input. Our method and ChromDragoNN

have the followingmajor differences. First, the design principles
of these two methods are notably different. ChromDragoNN
predicts chromatin accessibility through directly concatenating

DNA sequences and expression data of all genes. DeepCAGE
explains chromatin accessibility with DNA sequences and bind-
ing statuses of TFs. Therefore, DeepCAGE tries to interpret

chromatin accessibility in a more natural way since chromatin
accessibility is believed to be largely determined by the occu-
pancy and topological organization of nucleosomes as well as
chromatin-binding factors [2]. Second, the network architec-

tures of these two methods are different. ChromDragoNN uses
a ResNet to extract sequence features, while DeepCAGE uses a
DenseNet that is a relatively new architecture and has also been

experimentally validated to outperform ResNet in many tasks
[20]. Third, inputs of these two methods are also different.
ChromDragoNN requires DNA sequences and expression data

of all genes, while DeepCAGE takes DNA sequences and
expression data of 402 human core TFs as input. Motif binding
profiles of these TFs can be annotated with the existing motif

database, which can be precomputed without additional exper-
imental cost.

Gradient importance score

DeepCAGE takes advantage of the gradient importance score
(GIS) to prioritize TFs given a pair of cell types and a genomic
locus. Briefly, a locus is extended to a 200 kb genomic region

centered at the midpoint of the locus. Then, the average abso-
lute gradient of predicted accessibility within the extended
region with respect to the expression of a TF is calculated as:

GISki ¼ 1

Lj j
X
l2L

@ŷlk
@gki

���� ����
where bylk denotes the predicted accessibility of locus l in cell type
k, gki denotes the expression of TF i in cell type k, andL denotes
the set of putative regulatory elements that contains all accessi-

ble loci within the extended region. TheGIS gives an intuition of
which TFs play an important role in a specific cell type.

Motif analysis

The weights of the kernels from the first convolutional layer
are converted into position weight matrices (PWMs) by count-
ing subsequence occurrences in a set of input sequences that

activate a kernel at a threshold value. All subsequences with
activation values that greater than the threshold of a kernel
are pooled together and aligned. The PWMs are then com-

posed of the frequencies of the four nucleotides (A, C, G,
and T) at each position. A subsequence at position i is
regarded as activated ifXM�1

m¼0

XN�1

n¼0
wk

m;nx
j
iþm;n > a �MAVk

where M�N denotes the size of the kernels (4� 15 in the first
convolutional layer), and a is the control coefficient with the

default value of 0.7 in all experiments. MAVk denotes the max-
imal activation value of kernel k and is represented as:
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MAVk ¼ max
i;j

XM�1

m¼0

XN�1

n¼0

wk
m;nx

j
iþm;n

 !
Motifs are identified using the tool TomTom (v4.12.0) [27]

with the E-value threshold of 0.05 and are compared to known

motifs in the JASPAR database (v2018) [28]. Besides, the
information content of recovered motifs is calculated based

on the information entropy, as IC ¼Pi;j pijlog2pij � bilog2bi
� �

,

where pij is the element in PWM, i and j are the nucleotide type

and position, respectively, and bi (default value: 0:25) is the
background frequency of nucleotide i.

Phenotype prediction

A linear regression model with l1 penalty is adopted to predict
the heights of GTEx donors using the deleterious scores of
variants, as:

h ¼ a0 þ
XK
k¼1

akDOk

where h is the height of a GTEx donor, and DOk denotes the
deleterious score of variant k calculated using DeepCAGE.
The coefficient of the l1 penalty is set to 0.5. A ten-fold

cross-validation experiment is used in validation, and the aver-

age coefficient of determinant (R2) is used for evaluating how
much variance in the phenotype can be explained.

Results

DeepCAGE accurately predicts binary chromatin accessibility

statuses

We first evaluated the performance of DeepCAGE in predict-

ing whether an input DNA sequence is chromatin accessible or
not. To achieve this objective, we downloaded paired DNase-
seq and RNA-seq data across 55 cell types from the ENCODE

project [5] and conducted a five-fold cross-validation experi-
ment at the cell type level. In each fold of the validation, we
partitioned the data into a training set of 44 cell types and a

testing set of the remaining 11 cell types. We then defined puta-
tive known accessible loci as genomic regions that are chro-
matin accessible in at least two cell types in the training
data. For each cell type, we further identified a positive set

of putative loci that are accessible in the cell type and a nega-
tive set of putative loci that are inaccessible. After that, we
trained our model on the training data and classified positive

loci against negative ones for each testing cell type. Finally,
we calculated a criterion called the cell type-wise auPR (see
Method) to evaluate the performance of a classification

method.
We compared the performance of DeepCAGE with four

existing methods, including Basset [12], DeepSEA [10], DanQ
[18], and ChromDragoNN [21] in the aforementioned

cross-validation experiment. Results (Figure 2A) show that
DeepCAGE achieves the highest performance with the mean
cell type-wise auPR of 0.418 for known accessible loci, com-

pared to 0.166 of Basset, 0.195 of DeepSEA, 0.188 of DanQ,
and 0.319 of ChromDragoNN. Particularly, DeepCAGE out-
performs sequence-based methods by a large margin, suggest-

ing that these methods may fail in capturing cell type-specific
information. Further analysis shows that the proportion of
positive loci is in general small in a cell type and exhibits large
variation (ranging from 2.6% to 29%), suggesting the ability

of our method in dealing with unbalanced data.
We then took one step further to assess the ability of our

method in predicting novel chromatin accessible loci. In each

fold of the validation experiment, we identified putative novel
accessible loci as genomic regions that are accessible in at least
two testing cell types and are not present in the training data,

and we applied the trained model to predict whether these loci
are accessible or not in a testing cell type. Results, as shown in
Figure 2A, also suggest the superiority of DeepCAGE with a
mean cell type-wise auPR of 0.181, compared to 0.107 of Bas-

set, 0.104 of DeepSEA, 0.110 of DanQ, and 0.151 of
ChromDragoNN.

We finally analyzed how the cell type specificity of accessi-

ble regions affects the prediction performance of our method.
To achieve this objective, we divided the putative known acces-
sible loci into three groups based on the proportion of cell

types in which a locus is accessible. We then evaluated the
cross-validation results using a criterion called the locus-wise
auPR that evaluated the prediction performance of a method

on an accessible locus across cell types (see Method). Results
show that for a locus accessible in less than 10% cell types,
DeepCAGE achieves a mean locus-wise auPR of 0.578, and
this criterion increases when a locus is accessible in more cell

types (Figure 2B). These results suggest that the cell type speci-
ficity is likely a factor that affects the prediction performance
of a method.
DeepCAGE recovers a continuous degree of chromatin

accessibility

In the aforementioned classification experiments, we only con-
sidered the binary accessible status of a genomic region in a
specific cell type. In the real situation, however, the accessibil-

ity of a genomic region given by a DNase-seq experiment is in
a continuous form. Considering this situation, we further pro-
posed a DeepCAGE regression model to predict the degree of
chromatin accessibility for a DNA region , which is defined as

the normalized average count of raw reads that fall into the
corresponding region.

With the same cross-validation settings as in the aforemen-

tioned section, we compared the performance of DeepCAGE
to two baseline methods, BIRD [13] and ChromDragoNN
[21], and we assessed regression results in terms of two criteria,

the cell type-wise PCC and PSE (Figure 3A–C; see Method).
Results show that DeepCAGE achieves a mean cell type-
wise PCC of 0.785, compared to 0.637 for BIRD and 0.735
for ChromDragoNN (Figure 3B). Further analysis shows that

in 18.2% of the testing cell types, DeepCAGE achieves a cell
type-wise PCC of 0.85 or higher. In two cell types, DeepCAGE
even achieves a cell type-wise PCC of 0.9 or higher (see exam-

ples in Figure 3A). DeepCAGE also achieves the minimal PSE
(0.42), outperforming the two baseline methods (0.77 for
BIRD and 0.57 for ChromDragoNN) by a quite large margin

(Figure 3C).
We then explored the performance of DeepCAGE for puta-

tive accessible loci with different cell type specificity by intro-

ducing two statistics, cell range and cell variability, to
describe the activity dynamics of a genomic region based on



Figure 2 Performance of the DeepCAGE classification model

A. DeepCAGE achieves the highest cell type-wise auPR for both known accessible loci and novel accessible loci compared to baseline

methods (Basset, DeepSEA, DanQ, and ChromDragoNN). B. The performance of DeepCAGE for loci with different activities across

testing cell types. auPR, area under the precision-recall curve.
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the true DNase-seq signals cross cell types (see Method). We
divided known and novel accessible loci into three groups

(low, medium, and high) according to the 1/3 and 2/3 quantiles
of these statistics. Results show that DeepCAGE has high per-
formance for accessible loci with medium cell range and cell

variability (Figure 3D), consistent with the results in BIRD
[13]. Briefly, DeepCAGE achieves a median locus-wise PCC
(see Method) of 0.512 for known accessible loci with medium
cell range, compared to 0.435 and 0.399 for loci with low and

high cell ranges, respectively. When using the statistic of cell
variability, DeepCAGE achieves median locus-wise PCCs of
0.384, 0.514, and 0.448 for known accessible loci with low,

medium, and high cell variabilities, respectively. The results
are similar for novel accessible loci, except that the values of
the criteria are slightly low. We further divided known accessi-

ble loci into five groups based on the number of cell types in
which a locus is accessible. Results (Figure 3E) show that the
performance of DeepCAGE varies a lot for loci accessible in

different numbers of cell types. Briefly, the performance is high
for loci accessible in the medium proportion of cell types and
low for those accessible in only a small proportion of cell types.

Finally, we visualized both the true (green) and predicted

(yellow) DNase-seq signals of a sample genomic region across
three testing cell types (GM12878, HepG2, and H1-hESC) in
the UCSC genome browser [29]. In addition, we also provided

the mean signal (red; calculated by taking the average DNase-
seq signals across all training cell types) as a reference. As
shown in Figure 3F, obviously, DeepCAGE well distinguishes

the difference of DNase-seq signals among the three testing cell
types while the mean signal fails.

Model ablation analysis of DeepCAGE

We studied the contributions of gene expression and binding
scores of TFs to the performance of our method. Taking the
DeepCAGE regression model as an example, by discarding

gene expression data, the median cell type-wise PCC decreased
by 13.1% (Figure S3; P = 6.53 � 10�11, one-sided paired-
sample Wilcoxon signed-rank test). By removing binding

scores, the median cell type-wise PCC decreased by 3.6%
(Figure S3; P = 3.78 � 10�4, one-sided paired-sample
Wilcoxon signed-rank test). These results suggest that gene
expression data could significantly help improve the perfor-

mance of DeepCAGE in cross-cell type prediction, while bind-
ing scores slightly increase the performance. One potential
reason behind this observation is that a large proportion of

DNA sequence motifs have already been learned in the convo-
lution layers of the neural network, and thus the binding scores
only provide complementary information regarding DNA
sequence features.

Besides, to demonstrate the superiority of the network
architecture used by DeepCAGE, we additionally conducted
the following two experiments. First, we replaced the Dense-

Net with a ResNet which had the same number of layers as
the number of dense blocks and the same hidden nodes in
the convolutional layers. Results show that DenseNet leads

to 6.4% increment in performance over ResNet in terms of
the median cell type-wise PCC (Figure S4; P = 3.15 � 10�6,
one-sided paired-sample Wilcoxon signed-rank test). Second,

we explored the influence of two key hyperparameters (the
number of residual blocks and the convolutional layers within
a residual block) on the performance of ChromDragoNN. It is
noted that a deeper model architecture does not help improve

the performance significantly (Figure S5).

GIS helps prioritize cell type-related TFs

We proposed a strategy for prioritizing cell type-related TFs
according to the absolute gradient of the predicted accessibility
with respect to the expression of a TF. Taking the K562 cell

line as an example, we calculated the average GISs of all
TFs from all putative loci within up-streaming 100 kb to
down-streaming 100 kb of a tumor suppressor gene TP53,

which has been shown to have a key role in myeloid blast
transformation [30]. The average GISs of all TFs across cell
types with respect to the transcription start site (TSS) of this
gene are shown in Figure 4A. The 402 human core TFs were

then prioritized by their average GISs in K562 cell line
(Figure 4B). Interestingly, many top-ranked TFs were related
to functions in leukemia cells validated by literature. For

example, EGR1 (rank1st) was involved in regulating PMA-
induced megakaryocytic differentiation of K562 cell line [31];
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Figure 4 GIS helps identify important TFs

A. GIS heatmap of the 402 human core TFs across 55 cell types. B. Bar chart showing the GISs of the 20 top-ranked TFs in the K562 cell

line. C. Enriched GO terms by top-ranked TFs in the K562 cell line. GO, Gene Ontology.
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the inhibition of E2F7 (rank3rd) might lead to a reduction of

miRNAs involved in leukemic cell lines [32]; the expression
of JunB (rank5th) was inactivated by methylation in chronic
myeloid leukemia [33]. The Gene Ontology (GO) terms

enriched by the top 5% prioritized TF coding genes also
included biological processes of leukocyte differentiation and
hematopoietic development (Figure 4C). To sum up, the GIS

gives us an intuitive interpretation of which TF may play an
important role in predicting chromatin accessibility given a
specific cell type and a genomic region.

DeepCAGE automatically learns binding motifs of TFs

In order to make DeepCAGE more understandable, we
explored the features that were automatically learned by

DeepCAGE by investigating the weights of the 160 kernels
in the first convolutional layer. Briefly, we converted the
weights into PWMs (see Method) and then compared them

with known motifs in the JASPAR database [28]. We found
that 48 (30%) of the kernels could match known motifs at
the E-value threshold of 0.05. Among the matched kernels,

25 (52%) had at least one matched core human TF used in
DeepCAGE model. We then calculated the information con-
tent (see Method), set the weights of each kernel to zeros,
and denoted the decrease in the cell type-wise PCC as the influ-

ence score for each kernel. We showed several learned
unmatched motifs that have a high influence score (Figure 5A)
and illustrated a few examples of learned motifs that could

match known motifs in JASPAR database (Figure 5B). These
results demonstrate that DeepCAGE can not only help us find
potential binding motifs but also has the potential to guide the
3

Figure 3 Performance of the DeepCAGE regression model

A. DeepCAGE predicts DNase-seq signals in five testing cell types. B. C

types. *, two-sided paired-sample Wilcoxon signed-rank test P va

all testing cell types. D. Locus-wise PCC achieved by DeepCAGE with

accessible loci. E. Locus-wise PCC achieved by DeepCAGE considering

An example of true (green) and predicted (yellow) DNase-seq sign

(Chr1:42.83–42.93 Mb). Mean signal (red) denotes the average DNase

coefficient; PSE, prediction squared error.
finding of novel motifs which are not discovered by experi-

ments yet.

DeepCAGE prioritizes putative deleterious variants in personal

genomes

We applied DeepCAGE to WGS data analysis and demon-
strated how our method could benefit the detection of

individual-specific deleterious variants in regulatory elements
that potentially influence phenotype. The principle was to
quantify the degree that a genetic variant affects the chromatin
accessibility of a nearby genomic region and then prioritize

variants accordingly. As shown in Figure 6A, for an individual,
we fed the individual genome and the reference genome sepa-
rately to the trained DeepCAGE regression model and calcu-

lated prediction scores for each of them. We then took the
absolute log2 fold change of these two scores as a measure of
the change in chromatin accessibility. For a variant, we defined

its individual-level deleterious score by the change of chro-
matin accessibility of a 200 bp genomic region around. Finally,
we obtained the cohort-level deleterious score for a variant by

applying the aforementioned procedure to all individuals in a
cohort who contain the variant and then averaging the
individual-level deleterious scores for the variant. Note that
we also took as input the expression profile of TFs in the mus-

cle tissue and only considered WGS variants with the minor
allele frequency larger than 5.

We downloaded WGS data of 491 donors with the height

phenotype from the dbGap of the GTEx project (Table S5).
We collected 3290 risk single nucleotide polymorphisms
(SNPs) that were associated with height by a large-scale
ell type-wise PCC for three different methods across all testing cell

lue = 3:37� 10�5. C. PSE for three different methods across

respect to two statistics with both known accessible loci and novel

the number of accessible cell types under known accessible loci. F.

als of three testing cell types under the same genomic region

-seq signal across all training cell types. PCC, Pearson correlation



Figure 5 DeepCAGE recovers both known and novel motifs

A. DeepCAGE identifies both known and novel motifs in the learning process. Green dots and yellow dots represent known and novel

motifs recovered by DeepCAGE, respectively. B. Matched motifs with an E-value threshold of 0.05 in the format of sequence logos

(above: known motif from the JASPAR database; below: motif learned by DeepCAGE).

Figure 6 DeepCAGE helps prioritize and interpret WGS variants

A. The deleterious score is calculated by the absolute value of log2 fold change of predicted chromatin accessibility of the REF genome and

the personal genome from WGS data. B. WGS variants within a risk region were ranked by averaging deleterious scores across donors

containing the variant. C. The absolute log2 fold change of average height with respect to top-K and bottom-K ranked variants

(K = 20, 40, and 80) around a height-associated gene. *, P < 0.05. D. Predicting phenotype height with deleterious scores with all

variants, top-ranked variants, and bottom-ranked variants. REF, reference; WGS, whole-genome sequencing.
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genome-wide association study [34]. For each risk SNP, we
defined a risk region as a 200 kb genomic region centered at

the SNP. We then ranked SNPs within a risk region according
to their cohort-level deleterious scores obtained from donors
(Figure 6B). As an illustration, we examined the risk region
around a risk SNP (rs5742714) in the promoter region of
IGF1, a gene encoding a well-known growth factor [35]. The

top-ranked variants within this risk region showed an obvi-
ously greater absolute log2 fold change of average height than
the bottom-ranked variants (Figure 6C).
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We then quantitatively explored how much variance of the
height phenotype can be explained by the deleterious scores of
risk variants. To achieve this objective, we proposed a linear

regression model with l1 penalty, which took deleterious scores
of a set of variants as predictors and the height phenotype as
the response variable (see Method). Results show that the

1,103,572 WGS variants within the 3290 risk regions together
interpreted 2.49% of the height variance. Furthermore, the
variants ranked among the top 10% according to their delete-

rious scores in each risk region together can interpret 2.11% of
the height variance. These results suggest that the small por-
tion of variants prioritized by our method already contained
most information that is helpful in the explanation of the phe-

notype. We also noticed that the bottom-ranked 10% variants,
on the contrary, failed to interpret the height phenotype (Fig-
ure 6D). To conclude, DeepCAGE is capable of giving a fine

mapping of putative risk genetic variants and prioritizing
WGS variants that might be associated with a specific
phenotype.

Discussion

In this study, we introduce a deep learning framework called

DeepCAGE toward genome-wide prediction of chromatin
accessibility. A hallmark of our method is the incorporation
of the sequence data and the binding statuses of TFs into a

unified deep neural network. With these two types of informa-
tion complementing each other, our method overcomes the
limitations of existing approaches and demonstrates state-of-

the-art performance in not only classification but also regres-
sion of chromatin accessibility signals. Our method provides
insights into functional genomics in two aspects. First, the

GIS can give us an intuitional measurement of the contribu-
tion of a TF to the regulation with respect to a specific locus
in a certain cell type. Second, the visualization of convolu-
tional kernels demonstrates that features automatically

extracted by our method are not only consistent with existing
knowledge but also contain potentially novel binding motifs of
TFs. Such interpretability of our model will benefit the dissec-

tion of the regulatory landscape under a variety of cell condi-
tions. Our method also provides the possibility of interpreting
and prioritizing putative deleterious variants in genetic studies.

Such ability in explaining complex traits can further be
explored to promote the understanding of disease-associated
genetic variants.

Certainly, our model can be further improved from the fol-
lowing aspects. First, currently, we ignore the expression of
genes that direct the synthesis of proteins other than TFs.
However, it has been shown that proteins such as chromatin

regulators, a class of enzymes with specialized function
domains, can shape and maintain the epigenetic state in a cell
context-dependent fashion [36], and thus can also provide

information for inferring chromatin accessible state [37,38].
How to incorporate information on these chromatin regulators
into our model is one of the directions in our future work. Sec-

ond, predicting chromatin accessibility has been explored in a
single-cell level [39–42], it is possible to extend the predictive
power of DeepCAGE to a single-cell level by incorporating
the single-cell gene expression data. Third, our model currently

identifies chromatin accessible regions in a cell type-specific
manner but cannot further distinguish the specific type of
potential regulatory elements in these regions. With the accu-
mulation of annotations regarding cis-regulatory elements
such as enhancers and silencers [43–46], as well as computa-

tional methods for predicting interactions between these ele-
ments [47–51], it is expected that our framework can further
be extended to uncover the comprehensive relationship

between different types of genomic regulatory elements and
the genome-wide transcriptomic profile.

Code availability

DeepCAGE is freely available at https://github.com/kim-
mo1019/DeepCAGE with step-by-step instructions. DeepC-

AGE is also available at NGDC BioCode with accession
https://ngdc.cncb.ac.cn/biocode/tools/BT007170.
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