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Abstract

Motivation: Accurate prediction of cancer drug response (CDR) is challenging due to the uncertainty of drug efficacy
and heterogeneity of cancer patients. Strong evidences have implicated the high dependence of CDR on tumor gen-
omic and transcriptomic profiles of individual patients. Precise identification of CDR is crucial in both guiding anti-
cancer drug design and understanding cancer biology.

Results: In this study, we present DeepCDR which integrates multi-omics profiles of cancer cells and explores intrin-
sic chemical structures of drugs for predicting CDR. Specifically, DeepCDR is a hybrid graph convolutional network
consisting of a uniform graph convolutional network and multiple subnetworks. Unlike prior studies modeling hand-
crafted features of drugs, DeepCDR automatically learns the latent representation of topological structures among
atoms and bonds of drugs. Extensive experiments showed that DeepCDR outperformed state-of-the-art methods in
both classification and regression settings under various data settings. We also evaluated the contribution of differ-
ent types of omics profiles for assessing drug response. Furthermore, we provided an exploratory strategy for iden-
tifying potential cancer-associated genes concerning specific cancer types. Our results highlighted the predictive
power of DeepCDR and its potential translational value in guiding disease-specific drug design.

Availability and implementation: DeepCDR is freely available at https://github.com/kimmo1019/DeepCDR.

Contact: ruijiang@tsinghua.edu.cn or muzhou@sensebrain.site

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Designing novel drugs with desired efficacy for cancer patients is of
great clinical significance in pharmaceutical industry (Lee et al.,
2018). However, the intra- and inter-tumoral heterogeneity results
in diverse anti-cancer drug responses among patients (Kohane,
2015; Rubin, 2015), highlighting the complexity of genomics and
molecular backgrounds. Recent advances in high-throughput
sequencing technologies have deepened our understanding of cancer
phenotypes from the aggregated amounts of cancer omics profiles
(Gagan and Van Allen, 2015). For example, the pharmacogenomics
(Daly, 2017; Musa et al., 2017) is evolving rapidly by addressing the
interactions between genetic makeup and drug response sensitivity.

Precise identification of cancer drug response (CDR) has become
a crucial problem in guiding anti-cancer drug design and under-
standing cancer biology. Particularly, cancer cell lines (permanently
established in vitro cell cultures) play an important role in pharma-
cogenomics research as they reveal the landscape of environment
involved in cellular models of cancer (Iorio et al., 2016). Databases
such as Cancer Cell Line Encyclopedia (CCLE) (Barretina et al.,
2012) provide large-scale cancer profiles including genomic (e.g.
genomic mutation), transcriptomic (e.g. gene expression) and epige-
nomic data (e.g. DNA methylation). Also, the Genomics of Drug

Sensitivity in Cancer (GDSC) (Iorio et al., 2016) has been carried
out for investigating the drug response to numerous cancer cell lines.
For example, the half-maximal inhibitory concentration (IC50) is a
common indicator reflecting drug response across cancer cell lines.
Mining these cancer-associated profiles and their interactions will
help characterize cancer molecular signatures with therapeutic im-
pact, leading to accurate anti-cancer drug discovery. However, due
to the complexity of omics profiles, the translational potential of
identifying molecular signatures that determines drug response has
not been fully explored.

So far, a handful of computational models have been proposed
for predicting CDR which can be divided into two major categories.
The first type is the network-driven methods which analyze the in-
formation extracted from drug–drug similarities and cancer cell line
similarities. The core idea is to construct a similarity-based model
and assign the sensitivity profile of a known drug to a new drug if
there are structurally similar. For example, (Zhang et al., 2015)
established a dual similarity network based on the gene expression
of cancer cell lines and chemical structures of drugs to predict CDR.
(Turki and Wei, 2017) proposed a link-filtering algorithm on cancer
cell line network followed by a linear regression for predicting the
CDR. HNMDRP (Zhang et al., 2018) is a heterogeneous network
that integrates multiple networks, including cell line similarity,
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drug similarity and drug target similarity. An information flow algo-
rithm was proposed for predicting novel cancer drug associations.
Notably, network-driven methods tend to show poor scalability and
low computational efficiency. Machine learning methods are an-
other type of computational analysis directly exploring profiles from
large-scale drugs and cancer cell lines. Typical approaches include
logistic regression (Geeleher et al., 2014), Support Vector Machines
(SVM) (Dong et al., 2015), random forest (Daemen et al., 2013) and
neural networks (Chang et al., 2018; Liu et al., 2019; Manica et al.,
2019; Sharifi-Noghabi et al., 2019). Most machine learning meth-
ods used single omics data from cancer cell lines, such as genomic
mutation or gene expression. For example, CDRscan (Chang et al.,
2018) used the molecular fingerprints for drug representation and
genomic mutation as cancer cell profile. They were fed to an ensem-
ble CNN model for CDR prediction. tCNNs (Liu et al., 2019) takes
SMILES sequence for drug representation and genomic mutation as
cancer cell profile, which will be fed to a twin convolutional neural
network (CNN) as inputs. We summarized the major limitations of
prior studies as follows.

• Conventional feature extractions are unable to capture intrinsic

chemical structures of drugs. For example, engineered features of

compounds only consider chemical descriptors and molecular

fingerprints (Chang et al., 2018; Liu et al., 2018a; Wei et al.,

2019). Although they have been applied to drug discovery and

compound similarity search (Cereto-Massagué et al., 2015), such

features are sparse and computationally expensive for drug rep-

resentation. Also, string-based (e.g. SMILES) representation of

drugs (Guimaraes et al., 2017; Liu et al., 2019; Popova et al.,

2018; Segler et al., 2018) is quite brittle as small changes in the

string can lead to completely different molecules (Kusner et al.,

2017).
• Despite the emergence of multi-omics profiles, the vast majority

of previous studies merely focused on the analysis of single type

of omics data, such as genomic or transcriptomic profiles of can-

cer cells. The synergy of omics profiles and their interplay has

not been fully explored. In addition, the epigenomic data (e.g.

DNA methylation), proven to be highly related to cancer occur-

rence (Klutstein et al., 2016), is largely ignored.

Considering the above limitations, we proposed a hybrid graph
convolutional network for predicting CDR (Fig. 1). DeepCDR con-
sists of a uniform graph convolutional network (UGCN) for drug
representation based on the chemical structure of drugs.

Additionally, DeepCDR contains several subnetworks for feature
extraction of multi-omics profiles from genomics, transcriptomics
and epigenomics inputs. The high-level features of drugs and multi-
omics data were then concatenated together and fed into a 1-D
CNN. DeepCDR enables prediction of the IC50 sensitivity value of a
drug with regard to a cancer cell line in a regression task or claiming
the drug to be sensitive or resistant in a classification task.
Conceptually, DeepCDR can be regarded as a multimodal deep
learning solution for CDR prediction. We summarized our contribu-
tions as follows.

• We proposed a UGCN for novel feature extraction of drugs.

Compared to hand-crafted features (e.g. molecular fingerprints)

or string-based features (e.g. SMILES), the novel design of

UGCN architecture can automatically capture drug structures by

considering the interactions among atoms within a compound.
• We discovered that the synergy of multi-omics profiles from can-

cer cell lines can significantly improve the performance of CDR

prediction and epigenomics profiles are particularly helpful

according to our analysis.
• We designed extensive experiments to reveal the superiority of

our model. DeepCDR achieves state-of-the-art performance in

both classification and regression settings, highlighting the strong

predictive power of UGCN architecture and multimodal learning

strategy.

2 Materials and methods

2.1 Overview of DeepCDR framework
DeepCDR is constructed by a hybrid graph convolutional network
for CDR prediction, which integrates both drug-level and multi-
omics features (Fig. 1). The output of DeepCDR is measured by the
IC50, which denotes the effectiveness of a drug in inhibiting the
growth of a specific cancer cell line. For example, small IC50 value
reveals a high degree of drug efficacy, implying that the drug is sensi-
tive to the corresponding cancer cell line.

DeepCDR consists of a UGCN and several subnetworks for
extracting drug and cancer cell line information, respectively (see
detailed hyperparameters in Supplementary Tables S1 and S2). On
the one hand, the UGCN takes the adjacent information of atoms in
a drug into consideration by aggregating the features of neighboring
atoms together. On the other hand, the subnetworks extract high-
level features of cancer omics profiles from a certain cancer cell line

Fig. 1. The overview framework of DeepCDR. DeepCDR contains a UGCN and three subnetworks for processing drug structures and cancer cell profiles (genomic mutation,

gene expression and DNA methylation data) respectively. DeepCDR takes a pair of drug and cancer cell profiles as inputs and predicts the drug sensitivity (IC50) (regression)

or claims the drug to be sensitive or resistant (classification). The drug will be represented as a graph based on the chemical structure before transformed into a high-level latent

representation by the UGCN. Omics featured learned by subnetworks will be concatenated to the drug feature
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(i.e. genomic data, transcriptomic data and epigenomic data). Then
the high-level features of drug and multiple omics data were con-
catenated and fed to a 1D CNN. To alleviate potential overfitting in
the training process, we used Batch normalization (Ioffe and
Szegedy, 2015) and Dropout (Srivastava et al., 2014) after each con-
volutional layer. We used Adam as the optimizer for updating the
parameters of DeepCDR in the back-propagation process. Similar to
Liu et al. (2018b), the DeepCDR classification model takes a sig-
moid layer for prediction and cross-entropy (CE) as loss function,
while the DeepCDR regression model directly uses a linear layer
without an activation function and takes mean square error (MSE)
as loss function.

2.2 Drug feature representation
Each drug has its unique chemical structure which can be naturally
represented as a graph where the vertices and edges denote chemical
atoms and bonds, respectively. Suppose we have M drugs in our
study, the graph representation of these drugs can be described as
fGi ¼ ðXi;AiÞjMi¼1g where Xi 2 RNi�C and Ai 2 RNi�Ni are the fea-
ture matrix and adjacent matrix of the ith drug, respectively. Ni is
the number of atoms in the ith drug and C is the number of feature
channels. Each row of feature matrix corresponds to the attributes
of an atom. Following the description in (Ramsundar et al., 2019),
the attributes of each atom in a compound were represented as a 75-
dimensional feature vector (C¼75), including chemical and topo-
logical properties such as atom type, degree and hybridization. We
downloaded the structural files (.MOL) of all drugs (M¼223) from
PubChem library (Kim et al., 2019) of which the number of atoms
Ni varies from 5 to 96.

2.3 Uniform graph convolutional network (GCN)
We seek to achieve graph-level classification as each input of drug
represents a unique graph structure while the original GCN (Kipf
and Welling, 2017) aims at node classification within a single graph.
To address this issue, we extended the original GCN architecture
and presented a UGCN for processing drugs with variable sizes and
structures. The core idea of UGCN is to introduce an additional
complementary graph to the original graph of each drug to ensure
the consistent size of feature matrix and adjacent matrix. Given
the original graph representation of M drugs fGi ¼ ðXi;AiÞjMi¼1g, the
complementary graphs of drugs can be represented as fGc

i ¼
ðXc

i ;A
c
i Þj

M
i¼1g, where Xc

i 2 RðN�NiÞ�C and Ac
i 2 RðN�NiÞ�ðN�NiÞ. N is

a fixed number which is set to 100. Thus, the consistent representa-
tion of a drug is designed as follows:

A0i ¼
Ai Bi

BT
i Ac

i

� �
;X0i ¼

Xi

Xc
i

� �
; (1)

where Bi 2 RNi�ðN�NiÞ is a conjunction matrix which represents the
connection between the ith original graph and complementary
graph. A0i 2 RN�N and X0i 2 RN�C are the consistent adjacent ma-
trix and feature matrix. The UGCN applied to ith drug is defined as
f ðX0i;A

0
iÞ with a layer-wise operation as

H
ðlþ1Þ
i ¼ rð ~D 0i �

1
2 ~A
0
i
~D
0
i
�1

2H
ðlÞ
i HðlÞÞ; (2)

where ~A
0
i ¼ A0i þ IN is the adjacent matrix with added self-

connections, ~D
0
i is the degree matrix of ~A

0
i which ~D

0
i½j; j� ¼P

k
~A i
0½j;k�. H

ðlÞ
i and HðlÞ are the convolved signal and filter parame-

ters of the lth layer. rð�Þ is the activation function, which is set to

ReLuð�Þ ¼ maxð0; �Þ.We further denote the first Ni rows of H
ðlÞ
i as

H
ðl;aÞ
i and the remaining ðN �NiÞ rows as H

ðl;bÞ
i . For the first graph

layer where l¼0, we initialized the first layer as H
ð0Þ
i ¼ X0i and sub-

stituted formula (1) into (2), we can derive the propagation rule of

first layer of UGCN as the following:

H
ð1;aÞ
i ¼ rððð ~Di þDB

i Þ
�1

2 ~A ið ~Di þDB
i Þ
�1

2Xiþ
ð ~D i þDB

i Þ
�1

2Bið ~D
c

i þDBT

i Þ
�1

2Xc
i ÞHð0ÞÞ;

(3)

H
ð1;bÞ
i ¼ rððð ~Dc

i þDBT

i Þ
�1

2BT
i ð ~D i þDB

i Þ
�1

2Xiþ
ð ~Dc

i þDBT

i Þ
�1

2 ~A
c

i ð ~D
c

i þDBT

i Þ
�1

2Xc
i ÞHð0ÞÞ;

(4)

where ~D i and ~D
c

i are the degree matrix of ~A i and ~A
c

i and DB
i and

DBT

i are two diagonal matrix for describing row sum and column
sum of Bi. DB

i ½j; j� ¼
P

k Bi½j;k� and DBT

i ½j; j� ¼
P

k BT
i ½j; k�.

With mathematical induction, it can be inferred that the general
layer-wise propagation rule of UGCN can be represented by the fol-
lowing two equations:

H
ðlþ1;aÞ
i ¼ rððð ~D i þDB

i Þ
�1

2 ~A ið ~D i þDB
i Þ
�1

2H
ðl;aÞ
i þ

ð ~Di þDB
i Þ
�1

2Bið ~D
c

i þDBT

i Þ
�1

2H
ðl;bÞ
i ÞHðlÞÞ;

H
ðlþ1;bÞ
i ¼ rððð ~Dc

i þDBT

i Þ
�1

2BT
i ð ~D i þDB

i Þ
�1

2H
ðl;aÞ
i þ

ð ~Dc

i þDBT

i Þ
�1

2 ~A
c

i ð ~D
c

i þDBT

i Þ
�1

2H
ðl;bÞ
i ÞHðlÞÞ:

We further consider a special case where the complementary
graphs have no connection to the original graphs (Bi ¼ 0), so the
layer-wise propagation rule of UGCN will be simplified as

H
ðlþ1Þ
i ¼ ½ rð ~D�

1
2

i
~A i

~D
�1

2

i H
ðl;aÞ
i HðlÞÞrð ~Dc

�1
2

i
~A

c

i
~D

c
�1

2

i H
ðl;bÞ
i HðlÞÞ� : (5)

Overall, we showed that the convolution on the original graph
and the corresponding complementary graph is independent in
UGCN given the conjunction matrix Bi ¼ 0. At last, we applied a
global max pooling over the graph nodes in A0i to ensure that drugs
with different size will be embedded into a fixed dimensional vector
(default dimension: 100). In our study, we set Bi ¼ 0; Xc

i ¼ 0 and
l¼3 as the default settings for initializing DeepCDR. We also
explored another initialization strategy in the discussion section.

2.4 Omics-specific subnetworks
We designed omics-specific subnetworks to integrate the informa-
tion of multi-omics profiles. We used the late-integration fashion in
which each subnetwork will first learn a representation of a specific
omics data in a latent space and then be concatenated together. The
three subnetworks can be represented as fyg ¼ fgðxgÞ; yt ¼ ftðxtÞ;
ye ¼ feðxeÞg for processing genomic, transcriptomic and epigenomic
data per sample, respectively. Similar to Chang et al. (2018), we
used a 1 D convolutional network for processing genomic data as
the mutation positions are distributed linearly along the chromo-
some. For transcriptomic and epigenomic data, we directly used
fully connected networks for feature representation. (see detailed
hyperparameters of subnetworks in Supplementary Table S2).

fg : xg 2 R1�dg 7!yg 2 R1�d

ft : xt 2 R1�dt 7!yt 2 R1�d

fe : xe 2 R1�de 7!ye 2 R1�d

:

8><
>:

The dimension of latent space d is set to 100 in our experiments
by default.

2.5 Data preparation
We integrated three public databases in our study including GDSC
(Iorio et al., 2016), CCLE (Barretina et al., 2012) and TCGA patient
data (Weinstein et al., 2013). GDSC database provides IC50 values
for a large-scale drug screening data, of which each IC50 value corre-
sponds to a drug and a cancer cell line interaction pair. CCLE data-
base provides genomic, transcriptomic and epigenomic profiles for
more than a thousand cancer cell lines. For the three omics data, we
focused on genomic mutation data, gene expression data and DNA
methylation data, which can be easily accessed and downloaded
using DeMap portal (https://depmap.org). TCGA patient data pro-
vide both genetic profiles of patients and clinic annotation after
drug treatment. We used TCGA dataset for an external validation.

We downloaded IC50 values (natural log-transformed) across
hundreds of drugs and cancer cell lines from GDSC database as the
ground truth of drug sensitivity profiles for measuring CDR. We
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excluded drug samples without PubChem ID in GDSC database and
removed cancer cell lines in which any type of omics data was miss-
ing. Note that several drugs with different GDSC ids may share the
same PubChem ids due to the different screening condition. We
treated them as individual drugs in our study. We finally collected a
dataset containing 107 446 instances across 561 cancer cell lines
and 238 drugs. Considering all the 561�238¼133 518 drug and
cell line interaction pairs, approximately 19.5% (26 072) of the IC50

values were missing. The corresponding drug and cancer cell line
datasets used in this study are summarized in Supplementary Tables
S3 and S4. Each instance corresponds to a drug and cancer cell line
interaction pair. Each cell line was annotated with a cancer type
defined in The Cancer Genome Atlas (TCGA) studies and we only
considered TCGA cancer types suggested by (Chang et al., 2018) in
the downstream analysis.

For multi-omics profiles of cancer cell lines, we only consider
data related to 697 genes from COSMIC Cancer Gene Census
(https://cancer.sanger.ac.uk/census). For genomic mutation data,
34 673 unique mutation positions including SNPs and Indels within
the above genes were collected. The genomic mutation of each can-
cer cell line was represented as a binary feature vector in which ’1’
denotes a mutated position and ‘0’ denotes a non-mutated position
(dg¼34 673). For gene expression data, the TPM value of gene ex-
pression was log2 transformed and quantile normalized. Then the
gene expression of each cell line can be represented as a 697-dimen-
sional feature vector (dt¼697). The DNA methylation data was dir-
ectly obtained from the processed Bisulfite sequencing data of
promoter 1 kb upstream TSS region. Then we applied a median
value interpolation to the data as there were a minority of missing
values. The methylation of each cell line is finally represented by a
808-dimensional feature vector (de¼808). The three types of omics
data were finally transformed into a latent space where the
embedded dimension was fixed to 100 (d¼100).

For TCGA patient data, we chose the patients with cervical
squamous cell carcinoma and endocervical adenocarcinoma (CESC)
disease with two criterions. (i) The gene mutation, gene expression
and DNA methylation data are available. (ii) The clinic annotation
of drug response was also available. We finally created an external
data source with 54 records across 31 patients and 12 drugs. The
genetic profiles were preprocessed the same way as cell line data and
we took records with ‘Complete Response’ clinic annotation as posi-
tive examples (see details in Supplementary Table S5).

2.6 Baseline methods
The following competing methods were considered. The best or de-
fault parameters of each method were used for model comparison.

• Ridge regression is a linear regression model with L2 penalty. We

first concatenated genomic mutation features and molecular fin-

gerprints of drugs together and then fed to ridge regression

model. The ridge regression model was implemented using

sklearn library (Pedregosa et al., 2011). Basically, we found no

significant changes in results as we tried different settings of the

L2 penalty coefficient from f0.1,0.5,1.0,5.0g. We finally chose

the default coefficient parameter 1.0 provided by sklearn library

in the comparing experiments.
• Random forest is a tree-based regressor in which the input is the

same as the ridge regression model. The random forest was also

implemented with sklearn library (Pedregosa et al., 2011). We

set the number of trees in the forest from f10,100,200,500g and

chose the best parameter in the comparing experiments.
• CDRscan (Chang et al., 2018) applies an ensemble CNNs model

for predicting CDR using molecular fingerprints of drugs and

genomic mutation data of cancer cell line.
• tCNNs (Liu et al., 2019) applies an CNN for predicting CDR

using SMILES sequences of drugs and genomic mutation data of

cancer cell line. SMILES sequences of drugs will first be encoded

into one-hot representation and fed to the neural network.

• MOLI (Sharifi-Noghabi et al., 2019) is one of the few studies

that considers multi-omics profiles (genomic mutation, copy

number and gene expression) with encoder neural networks.

Specifically, MOLI is a drug-specific model where each model is

trained for a specific drug.

2.7 Model evaluation
In the regression experiments for predicting natural log-transformed
IC50 values given the profiles of drugs and cancer cell lines, we used
three common metrics for measuring the statistical correlation be-
tween observed values and predicted IC50 values, including
Pearson’s correlation coefficient (PCC), Spearman’s correlation co-
efficient (SCC) and root mean squared error (RMSE). PCC measures
the linear correlation between observed and predicted IC50 values
while SCC is a non-parametric measure of rank correlation of
observed and predicted IC50 values. RMSE directly measures the dif-
ference of observed and predicted IC50 values.

For classification experiments, we chose the area under the re-
ceiver operating characteristic curve (AUC) and area under the pre-
cision–recall curve (auPR) as the two commonly used measurements
of a classifier.

To comprehensively evaluate the performance of our model
DeepCDR, we demonstrated results under various data settings. We
briefly summarized these different data settings in the following:

• Rediscovering known CDRs. Based on the known drug–cell line

interactions across 561 cancer cell lines and 238 drugs, we ran-

domly selected 95% of instances of each TCGA cancer type as

the training set and the remaining 5% of the instances as the test-

ing set for model evaluation. The five-fold cross-validation was

conducted.
• Predicting unknown CDRs. We trained DeepCDR model with

all the known drug–cell line interaction pairs and predicted the

missing pairs in GDSC database (approximately 19.5% of all

pairs across 561 cancer cell lines and 238 drugs).
• Blind test for both drugs and cell lines. In order to evaluate the

predictive power of DeepCDR when given a new drug or new

cell line that is not included in the training data. We randomly

split the data into 80% training set and 20% test set on the cell

line or drug level. The five-fold cross-validation using leave-drug-

out and leave-cell-line-out strategy was conducted.
• External validation with patient data. To evaluate whether

DeepCDR trained with in vitro cell line data can be generalized

to in vivo patient data. We trained DeepCDR classification

model with cell line data and tested on TCGA patient data.

3 Results

3.1 DeepCDR recovers continuous degree of drug

sensitivity
We first designed a series of experiments to see whether DeepCDR
can help recover continuous degree of drug sensitivity. For this ob-
jective, we created datasets of the drug and cancer cell lines profiles
from GDSC (Iorio et al., 2016) and CCLE (Barretina et al., 2012)
database, respectively. We then evaluated the regression perform-
ance of DeepCDR and five comparing methods based on the
observed IC50 values and predicted IC50 values. Three common re-
gression evaluation metrics, including Pearson’s correlation coeffi-
cient (PCC), Spearman’s correlation coefficient (SCC) and root
mean square error (RMSE), were considered.

First, we evaluated the ability of DeepCDR and competing meth-
ods by rediscoverying CDR across multiple drugs and cell lines. We
observed that DeepCDR demonstrated superior predictive perform-
ance of drug response in the regression experiments by achieving the
highest Pearson’s correlation and Spearman’s correlation and lowest
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RMSE comparing to five competing methods (Table 1). Generally,
deep neural network models significantly outperformed other base-
lines as linear or tree-based model may not well capture the intrinsic
structural information within drugs. Among the four deep learning
models, DeepCDR outperforms three other deep learning methods
with a relatively large margin by achieving a Pearson’s correlation of
0.923 as compared to 0.813 of MOLI, 0.871 of CDRscan and 0.885
of tCNNs. This conclusion is also consistent considering other met-
rics such as Spearman’s correlation and root mean square error
(RMSE). In addition, we also showed the model variance by inde-
pendent training for five times.

Next, we illustrated several prediction cases across multiple
TCGA cancer types or different drug compounds. Among the 30 dif-
ferent TCGA cancer types, DeepCDR reveals a consistently high
performance by achieving a Pearson’s correlation ranging from
0.889 to 0.941. The best prediction case in multiple myeloma cancer
type and the worst prediction case in acute myeloid leukemia cancer
type were shown in Figure 2A and B, respectively. In the perspective
of drug, we also evaluated the regression performance with respect
to a specific drug. We observed that the DeepCDR illustrates a rela-
tively more dynamic regression performance by achieving a
Pearson’s correlation ranging from 0.328 to 0.938 (Fig. 2C and D),

Table 1. Regression experiments of IC50 values with DeepCDR and five comparing methods

Methods Pearson’s correlation Spearman’s correlation RMSE

Ridge regression 0.780 0.731 2.368

Random forest 0.809 0.767 2.270

MOLI 0.813 6 0.007 0.782 6 0.005 2.282 6 0.008

CDRscan 0.871 6 0.004 0.852 6 0.003 1.982 6 0.005

tCNNs 0.885 6 0.008 0.862 6 0.006 1.782 6 0.006

DeepCDR 0.923 6 0.006 0.903 6 0.004 1.058 6 0.006

Note: Three different measurements, including Pearson’s correlation, Spearman’s correlation and root mean square error (RMSE), were illustrated. We trained

neural network-based models from scratch for five times and the standard deviations of each method were also calculated for evaluating the model robustness.

DeepCDR demonstrates a consistent highest performance in all measurements comparing to other methods. Pearson’s correlation improved by 3.8% to the best

comparing method. Spearman correlation improved by 4.1% to the best comparing method. RMSE decreased by 0.724.

Fig. 2. Performance of DeepCDR in CDR prediction under different experiment settings. (A) and (B) highlighted the scatter plots in two TCGA cancer types with the best

(MM) and worst (LAML) performance. (C) and (D) showed the scatter plots in two drugs with the best (Belinostat) and worst (Pazopanib) performance. (E) The predicted

IC50 values of missing data in GDSC database grouped by drugs. Drugs were sort according to the average predicted IC50 value in missing cell lines. The number of missing

cell lines for each drug is also denoted below/above the violin plot. Each violin plot corresponds to a specific drug response in all missing cell lines. The blue and red violin plots

denote the top-10 drugs with the highest and the lowest efficacy. (F) The performance of DeepCDR and tCNNs in blind test for drugs. The x-axis and y-axis of each dot repre-

sent the Pearson’s correlation of tCNNs and DeepCDR, respectively. The dot fallen into the left upper side denotes the case where DeepCDR outperforms tCNNs. (G) The per-

formance of DeepCDR and tCNNs in blind test for cell lines. (H) and (I) show the receiver operating characteristic (ROC) and precision–recall (PR) curve of the four

comparing methods, respectively. (J) and (K) show the violin plots of the area under ROC curve (AUC) and area under PR curve (auPRs) across TCGA cancer types. Note that

each dot within a violin plot represents the average AUC or auPR score within one TCGA cancer type. Additionally, one-sided Mann-Whitney U tests between DeepCDR and

tCNNs were conducted. *P-value¼ 1.01�10�5, **P-value¼0.062
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which may due to the drug similarity diversity. We then validated
this conclusion by measuring the drug similarity among training
set and found that Belinostat has a significantly higher drug
similarity score compared to Pazopanib (Supplementary Fig. S1,
P-value¼2.38�10�37). The distribution of correlation across
TCGA cancer types and drugs were provided in Supplementary
Figure S2.

Next, we applied DeepCDR to predicting unknown CDRs in the
GDSC database. Towards this goal, DeepCDR was trained on all
known drug cell line interaction pairs across 561 cell lines and 238
drugs, then it was used for predicting the missing pairs in GDSC
database (approximately 19.5% of all pairs). Figure 2E illustrates
the distributions of predicted IC50 values in GDSC database grouped
by drugs. Note that drugs were sorted by the median predicted IC50

value across all missing cell lines. We provided the predicted IC50

values of top-10 drugs and related cancer cell lines in Supplementary
Table S6. Interestingly, Bortezomib was the drug with highest effi-
cacy in our prediction which has been proved to be a proteasome in-
hibitor that has activity in multiple cancer cell lines (Richardson
et al., 2003). Specifically, the predicted IC50 of Bortezomib with an
oesophagus cell line KYSE-510 is 7:45� 10�5 which implies a
strong therapeutic effect. This prediction was supported by the find-
ings in Lioni et al. (2008), which highlighted the robust activity of
Bortezomib in esophageal squamous cells. Phenformin and AICA
ribonucleotide are predicted to have the lowest efficacy. The former
was used for treating type 2 diabetes mellitus by inhibiting complex
I (Marchetti et al., 1987). The latter is capable of stimulating AMP-
dependent protein kinase (AMPK) activity (Corton et al., 1995).
The anti-cancer of the two drugs might be not their main function
but the side effect.

At last, we designed a series of blind tests for both drugs and cell
lines. The task becomes much more challenging as the drugs or cell
lines in the test data were unseen during the training process. The
drug sensitivity data from GDSC database were split into training
and test sets on the drug or cell line level. We compared our model
DeepCDR to the best baseline model tCNNs in the previous experi-
ments. In the blind test for drugs, the performance of both methods
largely decreased compared to previous experiments. However,
DeepCDR still achieves an average Pearson’s correlation of 0.503,
compared to 0.429 of tCNNs (Fig. 2F, P-value<1.51�10�6,
Supplementary Table S7). In the blind test for cell lines, DeepCDR
again outperforms tCNNs by a quite large margin by achieving an
average Pearson’s correlation of 0.889, compared to 0.865 of
tCNNs (Fig. 2G, P-value<2.2�10�16, Supplementary Table S8).

3.2 DeepCDR predicts binary drug sensitivity status
In this section, we binarized IC50 according to the threshold of each
drug provided by Iorio et al. (2016). After filtering drug samples
without a binary threshold, we collected a dataset with 7488 posi-
tive instances in which drugs are sensitive to the corresponding can-
cer cell line and 52 210 negative instances where drugs are resistant
to cancer cell lines. Similar to the regression experiment settings, we
first compared DeepCDR to three other neural network models by
rediscovering the CDR status. Despite of the unbalanced dataset
(around 1:7), DeepCDR outperforms three other methods by a large

margin by achieving a significantly higher AUC and auPR score of
0.841 and 0.502 (Fig. 2H and I), reaffirming the advance of
DeepCDR in capturing the interaction information of drug and can-
cer cells. As seen in Figure 2J and K, we grouped the test instances
(each instance denotes a drug and cancer cell line pair) according to
the TCGA cancer types, then we calculated the AUCs and auPRs of
the two methods under different cancer type groups. We observed
that DeepCDR achieves higher AUC score and auPR score than
tCNNs with respect to every TCGA cancer type. In the blind test for
both drugs and cell lines, DeepCDR achieves a consistently better
performance than the best baseline tCNNs with average AUC of
0.737 (Supplementary Figs S3 and S4). Besides, statistical hypothesis
tests, including binomial exact test and Mann-Whitney U test, were
additionally conducted in both blind test experiments for drugs and
cell lines (Supplementary Tables S9 and S10).

Last, we introduced TCGA patient data as an external valid-
ation. We trained DeepCDR model on in vitro cell line data
described above, and tested on in vivo patient data. Note that the
external dataset even contains more than 40% of drugs that were
not included in the cell line data. DeepCDR still achieves a per-
formance with AUC 0.688, compared to 0.618 of tCNNs
(Supplementary Fig. S5).

3.3 Model ablation analysis
Since most early studies only considered single type of omics data, it
is necessary for us to evaluate the contribution of different types of
omics data. For each type of omics data, we discarded other types of
omics data and trained DeepCDR regression model from scratch for
model ablation analysis. When using single omic data, the Pearson’s
correlation of DeepCDR ranges from 0.878 to 0.890, indicating the
usefulness of all individual omics profiles (Table 2). In particular,
the epigenomics data (DNA methylation) contributes the most
among different omics profiles. Notably, DeepCDR still achieved a
higher Pearson’s correlation than tCNNs even only genomic data
was used in both methods (0.889 versus 0.885). Furthermore, to ver-
ify the effectiveness of graph convolution, we first eliminated the ad-
jacent information of atoms within drugs by setting adjacent

Table 2. Model ablation studies with different experimental

settings

Experimental setting Pearson’s correlation

Single genomics 0.889

Single transcriptomics 0.878

Single epigenomics 0.890

Multi-omics without adjacent info 0.886

Multi-omics with adjacent info 0.923

Note: We showed both the contribution of each omic profile and the con-

tribution of graph convolution module. Mult-omic imporves Pearson’s correl-

ation by at least 3.3%. Note that the results were calculated based on five

independent runs, it is hard to do statistical test due to the small sample size

(5).

Table 3. Top-5 cancer-associated genes prioritized by DeepCDR

Drug Cell line TCGA type Top-5 cancer-associated genes ln(IC50)

Observed Predicted

Erlotinib A3/KAW DLBC EGFR, ALK, BCL10, CREB3L1, STAG1 1.110 1.206

Lapatinib BT-474 BRCA ERBB2, MDS2, FOXL2, EGFR, MNX1 �1.028 �0.879

Bleomycin A-375 SKCM ACKR3, ASXL 1, MTCP1, FOXL2, SALL4 �1.514 �1.428

Nilotinib BHT-101 THCA CBLC, ABI1, POU5F1, KLF4, ZNF198 �0.630 �0.714

Salubrinal SUP-B15 ALL JAK3, EIF1AX, NUMA1, PRDM1, IL21R 1.781 1.471

Note: We proposed a simple gradient-based strategy for prioritizing all the genes when making a prediction of a specific drug and cancer cell line pair. Many

top-ranked genes have been verified to be highly associated with cancers by existing literatures.
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matrices to identity matrices ( ~A i ¼ INi
). Then the DeepCDR model

without adjacent information achieved a reasonable Pearson’s cor-
relation of 0.886. We concluded that the regression performance
can be significantly boosted with the powerful representation
inferred from adjacent information by the proposed UGCN architec-
ture (0.923 versus 0.886).

3.4 DeepCDR helps prioritize cancer-associated genes
To deepen the understanding of biological knowledge revealed by
DeepCDR, we further proposed an exploratory strategy for priori-
tizing cancer-associated genes given an input drug and cancer cell
line pair, where we prioritized the involved genes by assigning each
gene with an associated score. In detail, to obtain the associated
scores for 697 genes involved in COSMIC Cancer Gene Census, we
considered the absolute gradient of the predicted outcome from
DeepCDR regression model with respect to the each gene’s expres-
sion. We highlighted several cases where the drugs were shown sen-
sitive to the corresponding cancer cell lines (Table 3). Importantly,
we found that many top-ranked genes have been verified to be asso-
ciated with cancers by existing literature. For example, Erlotinib
and Lapatinib, two known drugs for treating lung cancer, have been
proven to be EGFR inhibitors (Sayar et al., 2014), EGFR gene ranks
first and fourth from DeepCDR prioritizer in A3/KAW and BT-474
cell lines, respectively. Also, Nilotinib is a potential drug treatment
for chronic myelogenous leukemia (Kantarjian et al., 2011).
Interestingly, in our predictive task in a BHT-101 cell line, ABI1
ranked as the second cancer-associated gene, which has been previ-
ously proved to have specific expression patterns in leukemia cell
lines (Shibuya et al., 2001). Taken together, these evidences support
that DeepDCR could reveal potential therapeutic targets for anti-
cancer drugs and help discover hypothetical cancer-associated genes
for additional clinical testing.

4 Discussion

In this study, we have proposed DeepCDR as an end-to-end deep
learning model for precise anti-cancer drug response prediction. We
found that GCNs were extremely helpful for capturing structural in-
formation of drugs according to our analysis. To the best of our
knowledge, DeepCDR is the first work to apply GCN in CDR prob-
lem. In addition, we demonstrated that the combination of multi-
omics profiles and intrinsic graph-based representation of drugs are
appealing for assessing drug response sensitivity. Extensive experi-
ments highlighted the predictive power of DeepCDR and its poten-
tial translational value in guiding disease-specific drug design.

We provide two future directions for improving our method. (i)
The proposed UGCN can be utilized for data augmentation when
training instances were not adequate enough or extremely unbal-
anced by randomly sampling multiple complementary graphs for
each drug. In the classification experiment where the training data is
unbalanced, if we randomized the feature matrix and gave random
connections of complementary graphs and augmented the positive
training instances by five times, the average AUC can be further
improved by 0.8%. Augmentation with UGCN can potentially fur-
ther improve prediction performance. (ii) DeepCDR can be lever-
aged in combination with molecule generation tasks. Current
molecule generation models based on RNN language models (Segler
et al., 2018), generative adversarial networks (GANs) (Guimaraes
et al., 2017) and deep reinforcement learning (Popova et al., 2018)
focused on generating general compounds and ignored profiles of
targeted cancer cell. Methods focused on cancer-specific or disease-
specific novel drug design can be proposed by using CDR predicted
by DeepCDR as a prior knowledge or a reward score for guiding
molecule generation.

To sum up, we introduced DeepCDR that can be served as an
application for exploring drug sensitivity with large-scale cancer
multi-omics profiles. DeepCDR outperforms multiple baselines and
our analysis illustrates how our method can help prioritize thera-
peutic targets for anti-cancer drug discovery. In future work, we
plan to expand data inclusion for a large-scale omics data profiled

both before and after treatment to assess how their molecular pro-
files respond to perturbation by the testing drugs.
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